Step |
Hyp |
Ref |
Expression |
1 |
|
homfeqbas.1 |
|- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
2 |
1
|
dmeqd |
|- ( ph -> dom ( Homf ` C ) = dom ( Homf ` D ) ) |
3 |
|
eqid |
|- ( Homf ` C ) = ( Homf ` C ) |
4 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
5 |
3 4
|
homffn |
|- ( Homf ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) |
6 |
5
|
fndmi |
|- dom ( Homf ` C ) = ( ( Base ` C ) X. ( Base ` C ) ) |
7 |
|
eqid |
|- ( Homf ` D ) = ( Homf ` D ) |
8 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
9 |
7 8
|
homffn |
|- ( Homf ` D ) Fn ( ( Base ` D ) X. ( Base ` D ) ) |
10 |
9
|
fndmi |
|- dom ( Homf ` D ) = ( ( Base ` D ) X. ( Base ` D ) ) |
11 |
2 6 10
|
3eqtr3g |
|- ( ph -> ( ( Base ` C ) X. ( Base ` C ) ) = ( ( Base ` D ) X. ( Base ` D ) ) ) |
12 |
11
|
dmeqd |
|- ( ph -> dom ( ( Base ` C ) X. ( Base ` C ) ) = dom ( ( Base ` D ) X. ( Base ` D ) ) ) |
13 |
|
dmxpid |
|- dom ( ( Base ` C ) X. ( Base ` C ) ) = ( Base ` C ) |
14 |
|
dmxpid |
|- dom ( ( Base ` D ) X. ( Base ` D ) ) = ( Base ` D ) |
15 |
12 13 14
|
3eqtr3g |
|- ( ph -> ( Base ` C ) = ( Base ` D ) ) |