| Step | Hyp | Ref | Expression | 
						
							| 1 |  | homfeqbas.1 |  |-  ( ph -> ( Homf ` C ) = ( Homf ` D ) ) | 
						
							| 2 | 1 | dmeqd |  |-  ( ph -> dom ( Homf ` C ) = dom ( Homf ` D ) ) | 
						
							| 3 |  | eqid |  |-  ( Homf ` C ) = ( Homf ` C ) | 
						
							| 4 |  | eqid |  |-  ( Base ` C ) = ( Base ` C ) | 
						
							| 5 | 3 4 | homffn |  |-  ( Homf ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) | 
						
							| 6 | 5 | fndmi |  |-  dom ( Homf ` C ) = ( ( Base ` C ) X. ( Base ` C ) ) | 
						
							| 7 |  | eqid |  |-  ( Homf ` D ) = ( Homf ` D ) | 
						
							| 8 |  | eqid |  |-  ( Base ` D ) = ( Base ` D ) | 
						
							| 9 | 7 8 | homffn |  |-  ( Homf ` D ) Fn ( ( Base ` D ) X. ( Base ` D ) ) | 
						
							| 10 | 9 | fndmi |  |-  dom ( Homf ` D ) = ( ( Base ` D ) X. ( Base ` D ) ) | 
						
							| 11 | 2 6 10 | 3eqtr3g |  |-  ( ph -> ( ( Base ` C ) X. ( Base ` C ) ) = ( ( Base ` D ) X. ( Base ` D ) ) ) | 
						
							| 12 | 11 | dmeqd |  |-  ( ph -> dom ( ( Base ` C ) X. ( Base ` C ) ) = dom ( ( Base ` D ) X. ( Base ` D ) ) ) | 
						
							| 13 |  | dmxpid |  |-  dom ( ( Base ` C ) X. ( Base ` C ) ) = ( Base ` C ) | 
						
							| 14 |  | dmxpid |  |-  dom ( ( Base ` D ) X. ( Base ` D ) ) = ( Base ` D ) | 
						
							| 15 | 12 13 14 | 3eqtr3g |  |-  ( ph -> ( Base ` C ) = ( Base ` D ) ) |