Step |
Hyp |
Ref |
Expression |
1 |
|
homfeqd.1 |
|- ( ph -> ( Base ` C ) = ( Base ` D ) ) |
2 |
|
homfeqd.2 |
|- ( ph -> ( Hom ` C ) = ( Hom ` D ) ) |
3 |
2
|
oveqd |
|- ( ph -> ( x ( Hom ` C ) y ) = ( x ( Hom ` D ) y ) ) |
4 |
3
|
ralrimivw |
|- ( ph -> A. y e. ( Base ` C ) ( x ( Hom ` C ) y ) = ( x ( Hom ` D ) y ) ) |
5 |
4
|
ralrimivw |
|- ( ph -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( x ( Hom ` C ) y ) = ( x ( Hom ` D ) y ) ) |
6 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
7 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
8 |
|
eqidd |
|- ( ph -> ( Base ` C ) = ( Base ` C ) ) |
9 |
6 7 8 1
|
homfeq |
|- ( ph -> ( ( Homf ` C ) = ( Homf ` D ) <-> A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( x ( Hom ` C ) y ) = ( x ( Hom ` D ) y ) ) ) |
10 |
5 9
|
mpbird |
|- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |