| Step | Hyp | Ref | Expression | 
						
							| 1 |  | homfeqval.b |  |-  B = ( Base ` C ) | 
						
							| 2 |  | homfeqval.h |  |-  H = ( Hom ` C ) | 
						
							| 3 |  | homfeqval.j |  |-  J = ( Hom ` D ) | 
						
							| 4 |  | homfeqval.1 |  |-  ( ph -> ( Homf ` C ) = ( Homf ` D ) ) | 
						
							| 5 |  | homfeqval.x |  |-  ( ph -> X e. B ) | 
						
							| 6 |  | homfeqval.y |  |-  ( ph -> Y e. B ) | 
						
							| 7 | 4 | oveqd |  |-  ( ph -> ( X ( Homf ` C ) Y ) = ( X ( Homf ` D ) Y ) ) | 
						
							| 8 |  | eqid |  |-  ( Homf ` C ) = ( Homf ` C ) | 
						
							| 9 | 8 1 2 5 6 | homfval |  |-  ( ph -> ( X ( Homf ` C ) Y ) = ( X H Y ) ) | 
						
							| 10 |  | eqid |  |-  ( Homf ` D ) = ( Homf ` D ) | 
						
							| 11 |  | eqid |  |-  ( Base ` D ) = ( Base ` D ) | 
						
							| 12 | 4 | homfeqbas |  |-  ( ph -> ( Base ` C ) = ( Base ` D ) ) | 
						
							| 13 | 1 12 | eqtrid |  |-  ( ph -> B = ( Base ` D ) ) | 
						
							| 14 | 5 13 | eleqtrd |  |-  ( ph -> X e. ( Base ` D ) ) | 
						
							| 15 | 6 13 | eleqtrd |  |-  ( ph -> Y e. ( Base ` D ) ) | 
						
							| 16 | 10 11 3 14 15 | homfval |  |-  ( ph -> ( X ( Homf ` D ) Y ) = ( X J Y ) ) | 
						
							| 17 | 7 9 16 | 3eqtr3d |  |-  ( ph -> ( X H Y ) = ( X J Y ) ) |