Description: The functionalized Hom-set operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | homffn.f | |- F = ( Homf ` C ) |
|
homffn.b | |- B = ( Base ` C ) |
||
Assertion | homffn | |- F Fn ( B X. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homffn.f | |- F = ( Homf ` C ) |
|
2 | homffn.b | |- B = ( Base ` C ) |
|
3 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
4 | 1 2 3 | homffval | |- F = ( x e. B , y e. B |-> ( x ( Hom ` C ) y ) ) |
5 | ovex | |- ( x ( Hom ` C ) y ) e. _V |
|
6 | 4 5 | fnmpoi | |- F Fn ( B X. B ) |