Metamath Proof Explorer


Theorem homfval

Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses homffval.f
|- F = ( Homf ` C )
homffval.b
|- B = ( Base ` C )
homffval.h
|- H = ( Hom ` C )
homfval.x
|- ( ph -> X e. B )
homfval.y
|- ( ph -> Y e. B )
Assertion homfval
|- ( ph -> ( X F Y ) = ( X H Y ) )

Proof

Step Hyp Ref Expression
1 homffval.f
 |-  F = ( Homf ` C )
2 homffval.b
 |-  B = ( Base ` C )
3 homffval.h
 |-  H = ( Hom ` C )
4 homfval.x
 |-  ( ph -> X e. B )
5 homfval.y
 |-  ( ph -> Y e. B )
6 1 2 3 homffval
 |-  F = ( x e. B , y e. B |-> ( x H y ) )
7 6 a1i
 |-  ( ph -> F = ( x e. B , y e. B |-> ( x H y ) ) )
8 oveq12
 |-  ( ( x = X /\ y = Y ) -> ( x H y ) = ( X H Y ) )
9 8 adantl
 |-  ( ( ph /\ ( x = X /\ y = Y ) ) -> ( x H y ) = ( X H Y ) )
10 ovexd
 |-  ( ph -> ( X H Y ) e. _V )
11 7 9 4 5 10 ovmpod
 |-  ( ph -> ( X F Y ) = ( X H Y ) )