Step |
Hyp |
Ref |
Expression |
1 |
|
ax-hilex |
|- ~H e. _V |
2 |
1 1
|
elmap |
|- ( T e. ( ~H ^m ~H ) <-> T : ~H --> ~H ) |
3 |
|
oveq1 |
|- ( f = A -> ( f .h ( g ` x ) ) = ( A .h ( g ` x ) ) ) |
4 |
3
|
mpteq2dv |
|- ( f = A -> ( x e. ~H |-> ( f .h ( g ` x ) ) ) = ( x e. ~H |-> ( A .h ( g ` x ) ) ) ) |
5 |
|
fveq1 |
|- ( g = T -> ( g ` x ) = ( T ` x ) ) |
6 |
5
|
oveq2d |
|- ( g = T -> ( A .h ( g ` x ) ) = ( A .h ( T ` x ) ) ) |
7 |
6
|
mpteq2dv |
|- ( g = T -> ( x e. ~H |-> ( A .h ( g ` x ) ) ) = ( x e. ~H |-> ( A .h ( T ` x ) ) ) ) |
8 |
|
df-homul |
|- .op = ( f e. CC , g e. ( ~H ^m ~H ) |-> ( x e. ~H |-> ( f .h ( g ` x ) ) ) ) |
9 |
1
|
mptex |
|- ( x e. ~H |-> ( A .h ( T ` x ) ) ) e. _V |
10 |
4 7 8 9
|
ovmpo |
|- ( ( A e. CC /\ T e. ( ~H ^m ~H ) ) -> ( A .op T ) = ( x e. ~H |-> ( A .h ( T ` x ) ) ) ) |
11 |
2 10
|
sylan2br |
|- ( ( A e. CC /\ T : ~H --> ~H ) -> ( A .op T ) = ( x e. ~H |-> ( A .h ( T ` x ) ) ) ) |