Step |
Hyp |
Ref |
Expression |
1 |
|
mulcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) e. CC ) |
2 |
|
homval |
|- ( ( ( A x. B ) e. CC /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( ( A x. B ) .op T ) ` x ) = ( ( A x. B ) .h ( T ` x ) ) ) |
3 |
1 2
|
syl3an1 |
|- ( ( ( A e. CC /\ B e. CC ) /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( ( A x. B ) .op T ) ` x ) = ( ( A x. B ) .h ( T ` x ) ) ) |
4 |
3
|
3expia |
|- ( ( ( A e. CC /\ B e. CC ) /\ T : ~H --> ~H ) -> ( x e. ~H -> ( ( ( A x. B ) .op T ) ` x ) = ( ( A x. B ) .h ( T ` x ) ) ) ) |
5 |
4
|
3impa |
|- ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) -> ( x e. ~H -> ( ( ( A x. B ) .op T ) ` x ) = ( ( A x. B ) .h ( T ` x ) ) ) ) |
6 |
5
|
imp |
|- ( ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( ( ( A x. B ) .op T ) ` x ) = ( ( A x. B ) .h ( T ` x ) ) ) |
7 |
|
homval |
|- ( ( B e. CC /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( B .op T ) ` x ) = ( B .h ( T ` x ) ) ) |
8 |
7
|
oveq2d |
|- ( ( B e. CC /\ T : ~H --> ~H /\ x e. ~H ) -> ( A .h ( ( B .op T ) ` x ) ) = ( A .h ( B .h ( T ` x ) ) ) ) |
9 |
8
|
3expa |
|- ( ( ( B e. CC /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( A .h ( ( B .op T ) ` x ) ) = ( A .h ( B .h ( T ` x ) ) ) ) |
10 |
9
|
3adantl1 |
|- ( ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( A .h ( ( B .op T ) ` x ) ) = ( A .h ( B .h ( T ` x ) ) ) ) |
11 |
|
ffvelrn |
|- ( ( T : ~H --> ~H /\ x e. ~H ) -> ( T ` x ) e. ~H ) |
12 |
|
ax-hvmulass |
|- ( ( A e. CC /\ B e. CC /\ ( T ` x ) e. ~H ) -> ( ( A x. B ) .h ( T ` x ) ) = ( A .h ( B .h ( T ` x ) ) ) ) |
13 |
11 12
|
syl3an3 |
|- ( ( A e. CC /\ B e. CC /\ ( T : ~H --> ~H /\ x e. ~H ) ) -> ( ( A x. B ) .h ( T ` x ) ) = ( A .h ( B .h ( T ` x ) ) ) ) |
14 |
13
|
3expa |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( T : ~H --> ~H /\ x e. ~H ) ) -> ( ( A x. B ) .h ( T ` x ) ) = ( A .h ( B .h ( T ` x ) ) ) ) |
15 |
14
|
exp43 |
|- ( A e. CC -> ( B e. CC -> ( T : ~H --> ~H -> ( x e. ~H -> ( ( A x. B ) .h ( T ` x ) ) = ( A .h ( B .h ( T ` x ) ) ) ) ) ) ) |
16 |
15
|
3imp1 |
|- ( ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( ( A x. B ) .h ( T ` x ) ) = ( A .h ( B .h ( T ` x ) ) ) ) |
17 |
10 16
|
eqtr4d |
|- ( ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( A .h ( ( B .op T ) ` x ) ) = ( ( A x. B ) .h ( T ` x ) ) ) |
18 |
6 17
|
eqtr4d |
|- ( ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( ( ( A x. B ) .op T ) ` x ) = ( A .h ( ( B .op T ) ` x ) ) ) |
19 |
|
homulcl |
|- ( ( B e. CC /\ T : ~H --> ~H ) -> ( B .op T ) : ~H --> ~H ) |
20 |
|
homval |
|- ( ( A e. CC /\ ( B .op T ) : ~H --> ~H /\ x e. ~H ) -> ( ( A .op ( B .op T ) ) ` x ) = ( A .h ( ( B .op T ) ` x ) ) ) |
21 |
19 20
|
syl3an2 |
|- ( ( A e. CC /\ ( B e. CC /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( ( A .op ( B .op T ) ) ` x ) = ( A .h ( ( B .op T ) ` x ) ) ) |
22 |
21
|
3expia |
|- ( ( A e. CC /\ ( B e. CC /\ T : ~H --> ~H ) ) -> ( x e. ~H -> ( ( A .op ( B .op T ) ) ` x ) = ( A .h ( ( B .op T ) ` x ) ) ) ) |
23 |
22
|
3impb |
|- ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) -> ( x e. ~H -> ( ( A .op ( B .op T ) ) ` x ) = ( A .h ( ( B .op T ) ` x ) ) ) ) |
24 |
23
|
imp |
|- ( ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( ( A .op ( B .op T ) ) ` x ) = ( A .h ( ( B .op T ) ` x ) ) ) |
25 |
18 24
|
eqtr4d |
|- ( ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( ( ( A x. B ) .op T ) ` x ) = ( ( A .op ( B .op T ) ) ` x ) ) |
26 |
25
|
ralrimiva |
|- ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) -> A. x e. ~H ( ( ( A x. B ) .op T ) ` x ) = ( ( A .op ( B .op T ) ) ` x ) ) |
27 |
|
homulcl |
|- ( ( ( A x. B ) e. CC /\ T : ~H --> ~H ) -> ( ( A x. B ) .op T ) : ~H --> ~H ) |
28 |
1 27
|
stoic3 |
|- ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) -> ( ( A x. B ) .op T ) : ~H --> ~H ) |
29 |
|
homulcl |
|- ( ( A e. CC /\ ( B .op T ) : ~H --> ~H ) -> ( A .op ( B .op T ) ) : ~H --> ~H ) |
30 |
19 29
|
sylan2 |
|- ( ( A e. CC /\ ( B e. CC /\ T : ~H --> ~H ) ) -> ( A .op ( B .op T ) ) : ~H --> ~H ) |
31 |
30
|
3impb |
|- ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) -> ( A .op ( B .op T ) ) : ~H --> ~H ) |
32 |
|
hoeq |
|- ( ( ( ( A x. B ) .op T ) : ~H --> ~H /\ ( A .op ( B .op T ) ) : ~H --> ~H ) -> ( A. x e. ~H ( ( ( A x. B ) .op T ) ` x ) = ( ( A .op ( B .op T ) ) ` x ) <-> ( ( A x. B ) .op T ) = ( A .op ( B .op T ) ) ) ) |
33 |
28 31 32
|
syl2anc |
|- ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) -> ( A. x e. ~H ( ( ( A x. B ) .op T ) ` x ) = ( ( A .op ( B .op T ) ) ` x ) <-> ( ( A x. B ) .op T ) = ( A .op ( B .op T ) ) ) ) |
34 |
26 33
|
mpbid |
|- ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) -> ( ( A x. B ) .op T ) = ( A .op ( B .op T ) ) ) |