Step |
Hyp |
Ref |
Expression |
1 |
|
ffvelrn |
|- ( ( T : ~H --> ~H /\ x e. ~H ) -> ( T ` x ) e. ~H ) |
2 |
|
hvmulcl |
|- ( ( A e. CC /\ ( T ` x ) e. ~H ) -> ( A .h ( T ` x ) ) e. ~H ) |
3 |
1 2
|
sylan2 |
|- ( ( A e. CC /\ ( T : ~H --> ~H /\ x e. ~H ) ) -> ( A .h ( T ` x ) ) e. ~H ) |
4 |
3
|
anassrs |
|- ( ( ( A e. CC /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( A .h ( T ` x ) ) e. ~H ) |
5 |
4
|
fmpttd |
|- ( ( A e. CC /\ T : ~H --> ~H ) -> ( x e. ~H |-> ( A .h ( T ` x ) ) ) : ~H --> ~H ) |
6 |
|
hommval |
|- ( ( A e. CC /\ T : ~H --> ~H ) -> ( A .op T ) = ( x e. ~H |-> ( A .h ( T ` x ) ) ) ) |
7 |
6
|
feq1d |
|- ( ( A e. CC /\ T : ~H --> ~H ) -> ( ( A .op T ) : ~H --> ~H <-> ( x e. ~H |-> ( A .h ( T ` x ) ) ) : ~H --> ~H ) ) |
8 |
5 7
|
mpbird |
|- ( ( A e. CC /\ T : ~H --> ~H ) -> ( A .op T ) : ~H --> ~H ) |