Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1cn |
|- 1 e. CC |
2 |
|
homval |
|- ( ( 1 e. CC /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( 1 .op T ) ` x ) = ( 1 .h ( T ` x ) ) ) |
3 |
1 2
|
mp3an1 |
|- ( ( T : ~H --> ~H /\ x e. ~H ) -> ( ( 1 .op T ) ` x ) = ( 1 .h ( T ` x ) ) ) |
4 |
|
ffvelrn |
|- ( ( T : ~H --> ~H /\ x e. ~H ) -> ( T ` x ) e. ~H ) |
5 |
|
ax-hvmulid |
|- ( ( T ` x ) e. ~H -> ( 1 .h ( T ` x ) ) = ( T ` x ) ) |
6 |
4 5
|
syl |
|- ( ( T : ~H --> ~H /\ x e. ~H ) -> ( 1 .h ( T ` x ) ) = ( T ` x ) ) |
7 |
3 6
|
eqtrd |
|- ( ( T : ~H --> ~H /\ x e. ~H ) -> ( ( 1 .op T ) ` x ) = ( T ` x ) ) |
8 |
7
|
ralrimiva |
|- ( T : ~H --> ~H -> A. x e. ~H ( ( 1 .op T ) ` x ) = ( T ` x ) ) |
9 |
|
homulcl |
|- ( ( 1 e. CC /\ T : ~H --> ~H ) -> ( 1 .op T ) : ~H --> ~H ) |
10 |
1 9
|
mpan |
|- ( T : ~H --> ~H -> ( 1 .op T ) : ~H --> ~H ) |
11 |
|
hoeq |
|- ( ( ( 1 .op T ) : ~H --> ~H /\ T : ~H --> ~H ) -> ( A. x e. ~H ( ( 1 .op T ) ` x ) = ( T ` x ) <-> ( 1 .op T ) = T ) ) |
12 |
10 11
|
mpancom |
|- ( T : ~H --> ~H -> ( A. x e. ~H ( ( 1 .op T ) ` x ) = ( T ` x ) <-> ( 1 .op T ) = T ) ) |
13 |
8 12
|
mpbid |
|- ( T : ~H --> ~H -> ( 1 .op T ) = T ) |