Metamath Proof Explorer


Theorem honegdi

Description: Distribution of negative over addition. (Contributed by NM, 24-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion honegdi
|- ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( -u 1 .op ( T +op U ) ) = ( ( -u 1 .op T ) +op ( -u 1 .op U ) ) )

Proof

Step Hyp Ref Expression
1 neg1cn
 |-  -u 1 e. CC
2 hoadddi
 |-  ( ( -u 1 e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( -u 1 .op ( T +op U ) ) = ( ( -u 1 .op T ) +op ( -u 1 .op U ) ) )
3 1 2 mp3an1
 |-  ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( -u 1 .op ( T +op U ) ) = ( ( -u 1 .op T ) +op ( -u 1 .op U ) ) )