Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|- ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( T +op ( -u 1 .op U ) ) = ( if ( T : ~H --> ~H , T , 0hop ) +op ( -u 1 .op U ) ) ) |
2 |
|
oveq1 |
|- ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( T -op U ) = ( if ( T : ~H --> ~H , T , 0hop ) -op U ) ) |
3 |
1 2
|
eqeq12d |
|- ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( ( T +op ( -u 1 .op U ) ) = ( T -op U ) <-> ( if ( T : ~H --> ~H , T , 0hop ) +op ( -u 1 .op U ) ) = ( if ( T : ~H --> ~H , T , 0hop ) -op U ) ) ) |
4 |
|
oveq2 |
|- ( U = if ( U : ~H --> ~H , U , 0hop ) -> ( -u 1 .op U ) = ( -u 1 .op if ( U : ~H --> ~H , U , 0hop ) ) ) |
5 |
4
|
oveq2d |
|- ( U = if ( U : ~H --> ~H , U , 0hop ) -> ( if ( T : ~H --> ~H , T , 0hop ) +op ( -u 1 .op U ) ) = ( if ( T : ~H --> ~H , T , 0hop ) +op ( -u 1 .op if ( U : ~H --> ~H , U , 0hop ) ) ) ) |
6 |
|
oveq2 |
|- ( U = if ( U : ~H --> ~H , U , 0hop ) -> ( if ( T : ~H --> ~H , T , 0hop ) -op U ) = ( if ( T : ~H --> ~H , T , 0hop ) -op if ( U : ~H --> ~H , U , 0hop ) ) ) |
7 |
5 6
|
eqeq12d |
|- ( U = if ( U : ~H --> ~H , U , 0hop ) -> ( ( if ( T : ~H --> ~H , T , 0hop ) +op ( -u 1 .op U ) ) = ( if ( T : ~H --> ~H , T , 0hop ) -op U ) <-> ( if ( T : ~H --> ~H , T , 0hop ) +op ( -u 1 .op if ( U : ~H --> ~H , U , 0hop ) ) ) = ( if ( T : ~H --> ~H , T , 0hop ) -op if ( U : ~H --> ~H , U , 0hop ) ) ) ) |
8 |
|
ho0f |
|- 0hop : ~H --> ~H |
9 |
8
|
elimf |
|- if ( T : ~H --> ~H , T , 0hop ) : ~H --> ~H |
10 |
8
|
elimf |
|- if ( U : ~H --> ~H , U , 0hop ) : ~H --> ~H |
11 |
9 10
|
honegsubi |
|- ( if ( T : ~H --> ~H , T , 0hop ) +op ( -u 1 .op if ( U : ~H --> ~H , U , 0hop ) ) ) = ( if ( T : ~H --> ~H , T , 0hop ) -op if ( U : ~H --> ~H , U , 0hop ) ) |
12 |
3 7 11
|
dedth2h |
|- ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( T +op ( -u 1 .op U ) ) = ( T -op U ) ) |