| Step |
Hyp |
Ref |
Expression |
| 1 |
|
neg1cn |
|- -u 1 e. CC |
| 2 |
|
homulcl |
|- ( ( -u 1 e. CC /\ U : ~H --> ~H ) -> ( -u 1 .op U ) : ~H --> ~H ) |
| 3 |
1 2
|
mpan |
|- ( U : ~H --> ~H -> ( -u 1 .op U ) : ~H --> ~H ) |
| 4 |
|
honegdi |
|- ( ( T : ~H --> ~H /\ ( -u 1 .op U ) : ~H --> ~H ) -> ( -u 1 .op ( T +op ( -u 1 .op U ) ) ) = ( ( -u 1 .op T ) +op ( -u 1 .op ( -u 1 .op U ) ) ) ) |
| 5 |
3 4
|
sylan2 |
|- ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( -u 1 .op ( T +op ( -u 1 .op U ) ) ) = ( ( -u 1 .op T ) +op ( -u 1 .op ( -u 1 .op U ) ) ) ) |
| 6 |
|
honegsub |
|- ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( T +op ( -u 1 .op U ) ) = ( T -op U ) ) |
| 7 |
6
|
oveq2d |
|- ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( -u 1 .op ( T +op ( -u 1 .op U ) ) ) = ( -u 1 .op ( T -op U ) ) ) |
| 8 |
|
honegneg |
|- ( U : ~H --> ~H -> ( -u 1 .op ( -u 1 .op U ) ) = U ) |
| 9 |
8
|
adantl |
|- ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( -u 1 .op ( -u 1 .op U ) ) = U ) |
| 10 |
9
|
oveq2d |
|- ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( -u 1 .op T ) +op ( -u 1 .op ( -u 1 .op U ) ) ) = ( ( -u 1 .op T ) +op U ) ) |
| 11 |
5 7 10
|
3eqtr3d |
|- ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( -u 1 .op ( T -op U ) ) = ( ( -u 1 .op T ) +op U ) ) |