| Step |
Hyp |
Ref |
Expression |
| 1 |
|
honegsubdi |
|- ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( -u 1 .op ( T -op U ) ) = ( ( -u 1 .op T ) +op U ) ) |
| 2 |
|
neg1cn |
|- -u 1 e. CC |
| 3 |
|
homulcl |
|- ( ( -u 1 e. CC /\ T : ~H --> ~H ) -> ( -u 1 .op T ) : ~H --> ~H ) |
| 4 |
2 3
|
mpan |
|- ( T : ~H --> ~H -> ( -u 1 .op T ) : ~H --> ~H ) |
| 5 |
|
hoaddcom |
|- ( ( ( -u 1 .op T ) : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( -u 1 .op T ) +op U ) = ( U +op ( -u 1 .op T ) ) ) |
| 6 |
4 5
|
sylan |
|- ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( -u 1 .op T ) +op U ) = ( U +op ( -u 1 .op T ) ) ) |
| 7 |
|
honegsub |
|- ( ( U : ~H --> ~H /\ T : ~H --> ~H ) -> ( U +op ( -u 1 .op T ) ) = ( U -op T ) ) |
| 8 |
7
|
ancoms |
|- ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( U +op ( -u 1 .op T ) ) = ( U -op T ) ) |
| 9 |
1 6 8
|
3eqtrd |
|- ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( -u 1 .op ( T -op U ) ) = ( U -op T ) ) |