Metamath Proof Explorer


Theorem honegsubi

Description: Relationship between Hilbert operator addition and subtraction. (Contributed by NM, 24-Aug-2006) (New usage is discouraged.)

Ref Expression
Hypotheses hodseq.2
|- S : ~H --> ~H
hodseq.3
|- T : ~H --> ~H
Assertion honegsubi
|- ( S +op ( -u 1 .op T ) ) = ( S -op T )

Proof

Step Hyp Ref Expression
1 hodseq.2
 |-  S : ~H --> ~H
2 hodseq.3
 |-  T : ~H --> ~H
3 neg1cn
 |-  -u 1 e. CC
4 homulcl
 |-  ( ( -u 1 e. CC /\ T : ~H --> ~H ) -> ( -u 1 .op T ) : ~H --> ~H )
5 3 2 4 mp2an
 |-  ( -u 1 .op T ) : ~H --> ~H
6 hosval
 |-  ( ( S : ~H --> ~H /\ ( -u 1 .op T ) : ~H --> ~H /\ x e. ~H ) -> ( ( S +op ( -u 1 .op T ) ) ` x ) = ( ( S ` x ) +h ( ( -u 1 .op T ) ` x ) ) )
7 1 5 6 mp3an12
 |-  ( x e. ~H -> ( ( S +op ( -u 1 .op T ) ) ` x ) = ( ( S ` x ) +h ( ( -u 1 .op T ) ` x ) ) )
8 1 ffvelrni
 |-  ( x e. ~H -> ( S ` x ) e. ~H )
9 2 ffvelrni
 |-  ( x e. ~H -> ( T ` x ) e. ~H )
10 hvsubval
 |-  ( ( ( S ` x ) e. ~H /\ ( T ` x ) e. ~H ) -> ( ( S ` x ) -h ( T ` x ) ) = ( ( S ` x ) +h ( -u 1 .h ( T ` x ) ) ) )
11 8 9 10 syl2anc
 |-  ( x e. ~H -> ( ( S ` x ) -h ( T ` x ) ) = ( ( S ` x ) +h ( -u 1 .h ( T ` x ) ) ) )
12 homval
 |-  ( ( -u 1 e. CC /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( -u 1 .op T ) ` x ) = ( -u 1 .h ( T ` x ) ) )
13 3 2 12 mp3an12
 |-  ( x e. ~H -> ( ( -u 1 .op T ) ` x ) = ( -u 1 .h ( T ` x ) ) )
14 13 oveq2d
 |-  ( x e. ~H -> ( ( S ` x ) +h ( ( -u 1 .op T ) ` x ) ) = ( ( S ` x ) +h ( -u 1 .h ( T ` x ) ) ) )
15 11 14 eqtr4d
 |-  ( x e. ~H -> ( ( S ` x ) -h ( T ` x ) ) = ( ( S ` x ) +h ( ( -u 1 .op T ) ` x ) ) )
16 7 15 eqtr4d
 |-  ( x e. ~H -> ( ( S +op ( -u 1 .op T ) ) ` x ) = ( ( S ` x ) -h ( T ` x ) ) )
17 hodval
 |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( S -op T ) ` x ) = ( ( S ` x ) -h ( T ` x ) ) )
18 1 2 17 mp3an12
 |-  ( x e. ~H -> ( ( S -op T ) ` x ) = ( ( S ` x ) -h ( T ` x ) ) )
19 16 18 eqtr4d
 |-  ( x e. ~H -> ( ( S +op ( -u 1 .op T ) ) ` x ) = ( ( S -op T ) ` x ) )
20 19 rgen
 |-  A. x e. ~H ( ( S +op ( -u 1 .op T ) ) ` x ) = ( ( S -op T ) ` x )
21 1 5 hoaddcli
 |-  ( S +op ( -u 1 .op T ) ) : ~H --> ~H
22 1 2 hosubcli
 |-  ( S -op T ) : ~H --> ~H
23 21 22 hoeqi
 |-  ( A. x e. ~H ( ( S +op ( -u 1 .op T ) ) ` x ) = ( ( S -op T ) ` x ) <-> ( S +op ( -u 1 .op T ) ) = ( S -op T ) )
24 20 23 mpbi
 |-  ( S +op ( -u 1 .op T ) ) = ( S -op T )