Metamath Proof Explorer


Theorem honpcani

Description: Hilbert space operator cancellation law. (Contributed by NM, 11-Mar-2006) (New usage is discouraged.)

Ref Expression
Hypotheses hosd1.2
|- T : ~H --> ~H
hosd1.3
|- U : ~H --> ~H
Assertion honpcani
|- ( ( T -op U ) +op U ) = T

Proof

Step Hyp Ref Expression
1 hosd1.2
 |-  T : ~H --> ~H
2 hosd1.3
 |-  U : ~H --> ~H
3 1 2 2 hoaddsubi
 |-  ( ( T +op U ) -op U ) = ( ( T -op U ) +op U )
4 1 2 hopncani
 |-  ( ( T +op U ) -op U ) = T
5 3 4 eqtr3i
 |-  ( ( T -op U ) +op U ) = T