Metamath Proof Explorer


Theorem honpncani

Description: Hilbert space operator cancellation law. (Contributed by NM, 11-Mar-2006) (New usage is discouraged.)

Ref Expression
Hypotheses honpncan.1
|- R : ~H --> ~H
honpncan.2
|- S : ~H --> ~H
honpncan.3
|- T : ~H --> ~H
Assertion honpncani
|- ( ( R -op S ) +op ( S -op T ) ) = ( R -op T )

Proof

Step Hyp Ref Expression
1 honpncan.1
 |-  R : ~H --> ~H
2 honpncan.2
 |-  S : ~H --> ~H
3 honpncan.3
 |-  T : ~H --> ~H
4 1 2 hosubcli
 |-  ( R -op S ) : ~H --> ~H
5 4 2 3 hoaddsubassi
 |-  ( ( ( R -op S ) +op S ) -op T ) = ( ( R -op S ) +op ( S -op T ) )
6 1 2 honpcani
 |-  ( ( R -op S ) +op S ) = R
7 6 oveq1i
 |-  ( ( ( R -op S ) +op S ) -op T ) = ( R -op T )
8 5 7 eqtr3i
 |-  ( ( R -op S ) +op ( S -op T ) ) = ( R -op T )