Description: Hilbert space operator cancellation law. (Contributed by NM, 11-Mar-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | honpncan.1 | |- R : ~H --> ~H |
|
honpncan.2 | |- S : ~H --> ~H |
||
honpncan.3 | |- T : ~H --> ~H |
||
Assertion | honpncani | |- ( ( R -op S ) +op ( S -op T ) ) = ( R -op T ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | honpncan.1 | |- R : ~H --> ~H |
|
2 | honpncan.2 | |- S : ~H --> ~H |
|
3 | honpncan.3 | |- T : ~H --> ~H |
|
4 | 1 2 | hosubcli | |- ( R -op S ) : ~H --> ~H |
5 | 4 2 3 | hoaddsubassi | |- ( ( ( R -op S ) +op S ) -op T ) = ( ( R -op S ) +op ( S -op T ) ) |
6 | 1 2 | honpcani | |- ( ( R -op S ) +op S ) = R |
7 | 6 | oveq1i | |- ( ( ( R -op S ) +op S ) -op T ) = ( R -op T ) |
8 | 5 7 | eqtr3i | |- ( ( R -op S ) +op ( S -op T ) ) = ( R -op T ) |