Description: Hilbert space operator cancellation law. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hosd1.2 | |- T : ~H --> ~H | |
| hosd1.3 | |- U : ~H --> ~H | ||
| Assertion | hopncani | |- ( ( T +op U ) -op U ) = T | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hosd1.2 | |- T : ~H --> ~H | |
| 2 | hosd1.3 | |- U : ~H --> ~H | |
| 3 | 1 2 2 | hoaddsubassi | |- ( ( T +op U ) -op U ) = ( T +op ( U -op U ) ) | 
| 4 | 2 | hodidi | |- ( U -op U ) = 0hop | 
| 5 | 4 | oveq2i | |- ( T +op ( U -op U ) ) = ( T +op 0hop ) | 
| 6 | 1 | hoaddridi | |- ( T +op 0hop ) = T | 
| 7 | 3 5 6 | 3eqtri | |- ( ( T +op U ) -op U ) = T |