Metamath Proof Explorer


Theorem hopncani

Description: Hilbert space operator cancellation law. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)

Ref Expression
Hypotheses hosd1.2
|- T : ~H --> ~H
hosd1.3
|- U : ~H --> ~H
Assertion hopncani
|- ( ( T +op U ) -op U ) = T

Proof

Step Hyp Ref Expression
1 hosd1.2
 |-  T : ~H --> ~H
2 hosd1.3
 |-  U : ~H --> ~H
3 1 2 2 hoaddsubassi
 |-  ( ( T +op U ) -op U ) = ( T +op ( U -op U ) )
4 2 hodidi
 |-  ( U -op U ) = 0hop
5 4 oveq2i
 |-  ( T +op ( U -op U ) ) = ( T +op 0hop )
6 1 hoaddid1i
 |-  ( T +op 0hop ) = T
7 3 5 6 3eqtri
 |-  ( ( T +op U ) -op U ) = T