| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hosval |  |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ A e. ~H ) -> ( ( S +op T ) ` A ) = ( ( S ` A ) +h ( T ` A ) ) ) | 
						
							| 2 | 1 | 3expa |  |-  ( ( ( S : ~H --> ~H /\ T : ~H --> ~H ) /\ A e. ~H ) -> ( ( S +op T ) ` A ) = ( ( S ` A ) +h ( T ` A ) ) ) | 
						
							| 3 |  | ffvelcdm |  |-  ( ( S : ~H --> ~H /\ A e. ~H ) -> ( S ` A ) e. ~H ) | 
						
							| 4 |  | ffvelcdm |  |-  ( ( T : ~H --> ~H /\ A e. ~H ) -> ( T ` A ) e. ~H ) | 
						
							| 5 | 3 4 | anim12i |  |-  ( ( ( S : ~H --> ~H /\ A e. ~H ) /\ ( T : ~H --> ~H /\ A e. ~H ) ) -> ( ( S ` A ) e. ~H /\ ( T ` A ) e. ~H ) ) | 
						
							| 6 | 5 | anandirs |  |-  ( ( ( S : ~H --> ~H /\ T : ~H --> ~H ) /\ A e. ~H ) -> ( ( S ` A ) e. ~H /\ ( T ` A ) e. ~H ) ) | 
						
							| 7 |  | hvaddcl |  |-  ( ( ( S ` A ) e. ~H /\ ( T ` A ) e. ~H ) -> ( ( S ` A ) +h ( T ` A ) ) e. ~H ) | 
						
							| 8 | 6 7 | syl |  |-  ( ( ( S : ~H --> ~H /\ T : ~H --> ~H ) /\ A e. ~H ) -> ( ( S ` A ) +h ( T ` A ) ) e. ~H ) | 
						
							| 9 | 2 8 | eqeltrd |  |-  ( ( ( S : ~H --> ~H /\ T : ~H --> ~H ) /\ A e. ~H ) -> ( ( S +op T ) ` A ) e. ~H ) |