Step |
Hyp |
Ref |
Expression |
1 |
|
hosval |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ A e. ~H ) -> ( ( S +op T ) ` A ) = ( ( S ` A ) +h ( T ` A ) ) ) |
2 |
1
|
3expa |
|- ( ( ( S : ~H --> ~H /\ T : ~H --> ~H ) /\ A e. ~H ) -> ( ( S +op T ) ` A ) = ( ( S ` A ) +h ( T ` A ) ) ) |
3 |
|
ffvelrn |
|- ( ( S : ~H --> ~H /\ A e. ~H ) -> ( S ` A ) e. ~H ) |
4 |
|
ffvelrn |
|- ( ( T : ~H --> ~H /\ A e. ~H ) -> ( T ` A ) e. ~H ) |
5 |
3 4
|
anim12i |
|- ( ( ( S : ~H --> ~H /\ A e. ~H ) /\ ( T : ~H --> ~H /\ A e. ~H ) ) -> ( ( S ` A ) e. ~H /\ ( T ` A ) e. ~H ) ) |
6 |
5
|
anandirs |
|- ( ( ( S : ~H --> ~H /\ T : ~H --> ~H ) /\ A e. ~H ) -> ( ( S ` A ) e. ~H /\ ( T ` A ) e. ~H ) ) |
7 |
|
hvaddcl |
|- ( ( ( S ` A ) e. ~H /\ ( T ` A ) e. ~H ) -> ( ( S ` A ) +h ( T ` A ) ) e. ~H ) |
8 |
6 7
|
syl |
|- ( ( ( S : ~H --> ~H /\ T : ~H --> ~H ) /\ A e. ~H ) -> ( ( S ` A ) +h ( T ` A ) ) e. ~H ) |
9 |
2 8
|
eqeltrd |
|- ( ( ( S : ~H --> ~H /\ T : ~H --> ~H ) /\ A e. ~H ) -> ( ( S +op T ) ` A ) e. ~H ) |