Metamath Proof Explorer


Theorem hoscli

Description: Closure of Hilbert space operator sum. (Contributed by NM, 12-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses hoeq.1
|- S : ~H --> ~H
hoeq.2
|- T : ~H --> ~H
Assertion hoscli
|- ( A e. ~H -> ( ( S +op T ) ` A ) e. ~H )

Proof

Step Hyp Ref Expression
1 hoeq.1
 |-  S : ~H --> ~H
2 hoeq.2
 |-  T : ~H --> ~H
3 hoscl
 |-  ( ( ( S : ~H --> ~H /\ T : ~H --> ~H ) /\ A e. ~H ) -> ( ( S +op T ) ` A ) e. ~H )
4 1 2 3 mpanl12
 |-  ( A e. ~H -> ( ( S +op T ) ` A ) e. ~H )