Metamath Proof Explorer


Theorem hosd1i

Description: Hilbert space operator sum expressed in terms of difference. (Contributed by NM, 27-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses hosd1.2
|- T : ~H --> ~H
hosd1.3
|- U : ~H --> ~H
Assertion hosd1i
|- ( T +op U ) = ( T -op ( 0hop -op U ) )

Proof

Step Hyp Ref Expression
1 hosd1.2
 |-  T : ~H --> ~H
2 hosd1.3
 |-  U : ~H --> ~H
3 ho0f
 |-  0hop : ~H --> ~H
4 3 2 hosubcli
 |-  ( 0hop -op U ) : ~H --> ~H
5 1 2 hoaddcli
 |-  ( T +op U ) : ~H --> ~H
6 4 5 hoaddcomi
 |-  ( ( 0hop -op U ) +op ( T +op U ) ) = ( ( T +op U ) +op ( 0hop -op U ) )
7 5 3 2 hoaddsubassi
 |-  ( ( ( T +op U ) +op 0hop ) -op U ) = ( ( T +op U ) +op ( 0hop -op U ) )
8 6 7 eqtr4i
 |-  ( ( 0hop -op U ) +op ( T +op U ) ) = ( ( ( T +op U ) +op 0hop ) -op U )
9 5 hoaddid1i
 |-  ( ( T +op U ) +op 0hop ) = ( T +op U )
10 9 oveq1i
 |-  ( ( ( T +op U ) +op 0hop ) -op U ) = ( ( T +op U ) -op U )
11 1 2 2 hoaddsubi
 |-  ( ( T +op U ) -op U ) = ( ( T -op U ) +op U )
12 1 2 hosubcli
 |-  ( T -op U ) : ~H --> ~H
13 12 2 hoaddcomi
 |-  ( ( T -op U ) +op U ) = ( U +op ( T -op U ) )
14 2 1 hodseqi
 |-  ( U +op ( T -op U ) ) = T
15 11 13 14 3eqtri
 |-  ( ( T +op U ) -op U ) = T
16 8 10 15 3eqtri
 |-  ( ( 0hop -op U ) +op ( T +op U ) ) = T
17 1 4 5 hodsi
 |-  ( ( T -op ( 0hop -op U ) ) = ( T +op U ) <-> ( ( 0hop -op U ) +op ( T +op U ) ) = T )
18 16 17 mpbir
 |-  ( T -op ( 0hop -op U ) ) = ( T +op U )
19 18 eqcomi
 |-  ( T +op U ) = ( T -op ( 0hop -op U ) )