| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hosd1.2 |  |-  T : ~H --> ~H | 
						
							| 2 |  | hosd1.3 |  |-  U : ~H --> ~H | 
						
							| 3 |  | ho0f |  |-  0hop : ~H --> ~H | 
						
							| 4 | 3 2 | hosubcli |  |-  ( 0hop -op U ) : ~H --> ~H | 
						
							| 5 | 1 2 | hoaddcli |  |-  ( T +op U ) : ~H --> ~H | 
						
							| 6 | 4 5 | hoaddcomi |  |-  ( ( 0hop -op U ) +op ( T +op U ) ) = ( ( T +op U ) +op ( 0hop -op U ) ) | 
						
							| 7 | 5 3 2 | hoaddsubassi |  |-  ( ( ( T +op U ) +op 0hop ) -op U ) = ( ( T +op U ) +op ( 0hop -op U ) ) | 
						
							| 8 | 6 7 | eqtr4i |  |-  ( ( 0hop -op U ) +op ( T +op U ) ) = ( ( ( T +op U ) +op 0hop ) -op U ) | 
						
							| 9 | 5 | hoaddridi |  |-  ( ( T +op U ) +op 0hop ) = ( T +op U ) | 
						
							| 10 | 9 | oveq1i |  |-  ( ( ( T +op U ) +op 0hop ) -op U ) = ( ( T +op U ) -op U ) | 
						
							| 11 | 1 2 2 | hoaddsubi |  |-  ( ( T +op U ) -op U ) = ( ( T -op U ) +op U ) | 
						
							| 12 | 1 2 | hosubcli |  |-  ( T -op U ) : ~H --> ~H | 
						
							| 13 | 12 2 | hoaddcomi |  |-  ( ( T -op U ) +op U ) = ( U +op ( T -op U ) ) | 
						
							| 14 | 2 1 | hodseqi |  |-  ( U +op ( T -op U ) ) = T | 
						
							| 15 | 11 13 14 | 3eqtri |  |-  ( ( T +op U ) -op U ) = T | 
						
							| 16 | 8 10 15 | 3eqtri |  |-  ( ( 0hop -op U ) +op ( T +op U ) ) = T | 
						
							| 17 | 1 4 5 | hodsi |  |-  ( ( T -op ( 0hop -op U ) ) = ( T +op U ) <-> ( ( 0hop -op U ) +op ( T +op U ) ) = T ) | 
						
							| 18 | 16 17 | mpbir |  |-  ( T -op ( 0hop -op U ) ) = ( T +op U ) | 
						
							| 19 | 18 | eqcomi |  |-  ( T +op U ) = ( T -op ( 0hop -op U ) ) |