Step |
Hyp |
Ref |
Expression |
1 |
|
hosd1.2 |
|- T : ~H --> ~H |
2 |
|
hosd1.3 |
|- U : ~H --> ~H |
3 |
|
ho0f |
|- 0hop : ~H --> ~H |
4 |
3 2
|
hosubcli |
|- ( 0hop -op U ) : ~H --> ~H |
5 |
1 2
|
hoaddcli |
|- ( T +op U ) : ~H --> ~H |
6 |
4 5
|
hoaddcomi |
|- ( ( 0hop -op U ) +op ( T +op U ) ) = ( ( T +op U ) +op ( 0hop -op U ) ) |
7 |
5 3 2
|
hoaddsubassi |
|- ( ( ( T +op U ) +op 0hop ) -op U ) = ( ( T +op U ) +op ( 0hop -op U ) ) |
8 |
6 7
|
eqtr4i |
|- ( ( 0hop -op U ) +op ( T +op U ) ) = ( ( ( T +op U ) +op 0hop ) -op U ) |
9 |
5
|
hoaddid1i |
|- ( ( T +op U ) +op 0hop ) = ( T +op U ) |
10 |
9
|
oveq1i |
|- ( ( ( T +op U ) +op 0hop ) -op U ) = ( ( T +op U ) -op U ) |
11 |
1 2 2
|
hoaddsubi |
|- ( ( T +op U ) -op U ) = ( ( T -op U ) +op U ) |
12 |
1 2
|
hosubcli |
|- ( T -op U ) : ~H --> ~H |
13 |
12 2
|
hoaddcomi |
|- ( ( T -op U ) +op U ) = ( U +op ( T -op U ) ) |
14 |
2 1
|
hodseqi |
|- ( U +op ( T -op U ) ) = T |
15 |
11 13 14
|
3eqtri |
|- ( ( T +op U ) -op U ) = T |
16 |
8 10 15
|
3eqtri |
|- ( ( 0hop -op U ) +op ( T +op U ) ) = T |
17 |
1 4 5
|
hodsi |
|- ( ( T -op ( 0hop -op U ) ) = ( T +op U ) <-> ( ( 0hop -op U ) +op ( T +op U ) ) = T ) |
18 |
16 17
|
mpbir |
|- ( T -op ( 0hop -op U ) ) = ( T +op U ) |
19 |
18
|
eqcomi |
|- ( T +op U ) = ( T -op ( 0hop -op U ) ) |