Metamath Proof Explorer


Theorem hosd2i

Description: Hilbert space operator sum expressed in terms of difference. (Contributed by NM, 27-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses hosd1.2
|- T : ~H --> ~H
hosd1.3
|- U : ~H --> ~H
Assertion hosd2i
|- ( T +op U ) = ( T -op ( ( U -op U ) -op U ) )

Proof

Step Hyp Ref Expression
1 hosd1.2
 |-  T : ~H --> ~H
2 hosd1.3
 |-  U : ~H --> ~H
3 1 2 hosd1i
 |-  ( T +op U ) = ( T -op ( 0hop -op U ) )
4 2 hodidi
 |-  ( U -op U ) = 0hop
5 4 oveq1i
 |-  ( ( U -op U ) -op U ) = ( 0hop -op U )
6 5 oveq2i
 |-  ( T -op ( ( U -op U ) -op U ) ) = ( T -op ( 0hop -op U ) )
7 3 6 eqtr4i
 |-  ( T +op U ) = ( T -op ( ( U -op U ) -op U ) )