Description: Hilbert space operator sum expressed in terms of difference. (Contributed by NM, 27-Aug-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hosd1.2 | |- T : ~H --> ~H |
|
hosd1.3 | |- U : ~H --> ~H |
||
Assertion | hosd2i | |- ( T +op U ) = ( T -op ( ( U -op U ) -op U ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hosd1.2 | |- T : ~H --> ~H |
|
2 | hosd1.3 | |- U : ~H --> ~H |
|
3 | 1 2 | hosd1i | |- ( T +op U ) = ( T -op ( 0hop -op U ) ) |
4 | 2 | hodidi | |- ( U -op U ) = 0hop |
5 | 4 | oveq1i | |- ( ( U -op U ) -op U ) = ( 0hop -op U ) |
6 | 5 | oveq2i | |- ( T -op ( ( U -op U ) -op U ) ) = ( T -op ( 0hop -op U ) ) |
7 | 3 6 | eqtr4i | |- ( T +op U ) = ( T -op ( ( U -op U ) -op U ) ) |