Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|- ( S = if ( S : ~H --> ~H , S , 0hop ) -> ( S -op T ) = ( if ( S : ~H --> ~H , S , 0hop ) -op T ) ) |
2 |
1
|
feq1d |
|- ( S = if ( S : ~H --> ~H , S , 0hop ) -> ( ( S -op T ) : ~H --> ~H <-> ( if ( S : ~H --> ~H , S , 0hop ) -op T ) : ~H --> ~H ) ) |
3 |
|
oveq2 |
|- ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( if ( S : ~H --> ~H , S , 0hop ) -op T ) = ( if ( S : ~H --> ~H , S , 0hop ) -op if ( T : ~H --> ~H , T , 0hop ) ) ) |
4 |
3
|
feq1d |
|- ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( ( if ( S : ~H --> ~H , S , 0hop ) -op T ) : ~H --> ~H <-> ( if ( S : ~H --> ~H , S , 0hop ) -op if ( T : ~H --> ~H , T , 0hop ) ) : ~H --> ~H ) ) |
5 |
|
ho0f |
|- 0hop : ~H --> ~H |
6 |
5
|
elimf |
|- if ( S : ~H --> ~H , S , 0hop ) : ~H --> ~H |
7 |
5
|
elimf |
|- if ( T : ~H --> ~H , T , 0hop ) : ~H --> ~H |
8 |
6 7
|
hosubcli |
|- ( if ( S : ~H --> ~H , S , 0hop ) -op if ( T : ~H --> ~H , T , 0hop ) ) : ~H --> ~H |
9 |
2 4 8
|
dedth2h |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( S -op T ) : ~H --> ~H ) |