Step |
Hyp |
Ref |
Expression |
1 |
|
hoeq.1 |
|- S : ~H --> ~H |
2 |
|
hoeq.2 |
|- T : ~H --> ~H |
3 |
|
hodmval |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( S -op T ) = ( x e. ~H |-> ( ( S ` x ) -h ( T ` x ) ) ) ) |
4 |
1 2 3
|
mp2an |
|- ( S -op T ) = ( x e. ~H |-> ( ( S ` x ) -h ( T ` x ) ) ) |
5 |
1
|
ffvelrni |
|- ( x e. ~H -> ( S ` x ) e. ~H ) |
6 |
2
|
ffvelrni |
|- ( x e. ~H -> ( T ` x ) e. ~H ) |
7 |
|
hvsubcl |
|- ( ( ( S ` x ) e. ~H /\ ( T ` x ) e. ~H ) -> ( ( S ` x ) -h ( T ` x ) ) e. ~H ) |
8 |
5 6 7
|
syl2anc |
|- ( x e. ~H -> ( ( S ` x ) -h ( T ` x ) ) e. ~H ) |
9 |
4 8
|
fmpti |
|- ( S -op T ) : ~H --> ~H |