| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoeq.1 |  |-  S : ~H --> ~H | 
						
							| 2 |  | hoeq.2 |  |-  T : ~H --> ~H | 
						
							| 3 |  | hodmval |  |-  ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( S -op T ) = ( x e. ~H |-> ( ( S ` x ) -h ( T ` x ) ) ) ) | 
						
							| 4 | 1 2 3 | mp2an |  |-  ( S -op T ) = ( x e. ~H |-> ( ( S ` x ) -h ( T ` x ) ) ) | 
						
							| 5 | 1 | ffvelcdmi |  |-  ( x e. ~H -> ( S ` x ) e. ~H ) | 
						
							| 6 | 2 | ffvelcdmi |  |-  ( x e. ~H -> ( T ` x ) e. ~H ) | 
						
							| 7 |  | hvsubcl |  |-  ( ( ( S ` x ) e. ~H /\ ( T ` x ) e. ~H ) -> ( ( S ` x ) -h ( T ` x ) ) e. ~H ) | 
						
							| 8 | 5 6 7 | syl2anc |  |-  ( x e. ~H -> ( ( S ` x ) -h ( T ` x ) ) e. ~H ) | 
						
							| 9 | 4 8 | fmpti |  |-  ( S -op T ) : ~H --> ~H |