Step |
Hyp |
Ref |
Expression |
1 |
|
neg1cn |
|- -u 1 e. CC |
2 |
|
homulcl |
|- ( ( -u 1 e. CC /\ U : ~H --> ~H ) -> ( -u 1 .op U ) : ~H --> ~H ) |
3 |
1 2
|
mpan |
|- ( U : ~H --> ~H -> ( -u 1 .op U ) : ~H --> ~H ) |
4 |
|
hoadddi |
|- ( ( A e. CC /\ T : ~H --> ~H /\ ( -u 1 .op U ) : ~H --> ~H ) -> ( A .op ( T +op ( -u 1 .op U ) ) ) = ( ( A .op T ) +op ( A .op ( -u 1 .op U ) ) ) ) |
5 |
3 4
|
syl3an3 |
|- ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( A .op ( T +op ( -u 1 .op U ) ) ) = ( ( A .op T ) +op ( A .op ( -u 1 .op U ) ) ) ) |
6 |
|
homul12 |
|- ( ( A e. CC /\ -u 1 e. CC /\ U : ~H --> ~H ) -> ( A .op ( -u 1 .op U ) ) = ( -u 1 .op ( A .op U ) ) ) |
7 |
1 6
|
mp3an2 |
|- ( ( A e. CC /\ U : ~H --> ~H ) -> ( A .op ( -u 1 .op U ) ) = ( -u 1 .op ( A .op U ) ) ) |
8 |
7
|
3adant2 |
|- ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( A .op ( -u 1 .op U ) ) = ( -u 1 .op ( A .op U ) ) ) |
9 |
8
|
oveq2d |
|- ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( A .op T ) +op ( A .op ( -u 1 .op U ) ) ) = ( ( A .op T ) +op ( -u 1 .op ( A .op U ) ) ) ) |
10 |
5 9
|
eqtrd |
|- ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( A .op ( T +op ( -u 1 .op U ) ) ) = ( ( A .op T ) +op ( -u 1 .op ( A .op U ) ) ) ) |
11 |
|
honegsub |
|- ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( T +op ( -u 1 .op U ) ) = ( T -op U ) ) |
12 |
11
|
oveq2d |
|- ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( A .op ( T +op ( -u 1 .op U ) ) ) = ( A .op ( T -op U ) ) ) |
13 |
12
|
3adant1 |
|- ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( A .op ( T +op ( -u 1 .op U ) ) ) = ( A .op ( T -op U ) ) ) |
14 |
|
homulcl |
|- ( ( A e. CC /\ T : ~H --> ~H ) -> ( A .op T ) : ~H --> ~H ) |
15 |
|
homulcl |
|- ( ( A e. CC /\ U : ~H --> ~H ) -> ( A .op U ) : ~H --> ~H ) |
16 |
|
honegsub |
|- ( ( ( A .op T ) : ~H --> ~H /\ ( A .op U ) : ~H --> ~H ) -> ( ( A .op T ) +op ( -u 1 .op ( A .op U ) ) ) = ( ( A .op T ) -op ( A .op U ) ) ) |
17 |
14 15 16
|
syl2an |
|- ( ( ( A e. CC /\ T : ~H --> ~H ) /\ ( A e. CC /\ U : ~H --> ~H ) ) -> ( ( A .op T ) +op ( -u 1 .op ( A .op U ) ) ) = ( ( A .op T ) -op ( A .op U ) ) ) |
18 |
17
|
3impdi |
|- ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( A .op T ) +op ( -u 1 .op ( A .op U ) ) ) = ( ( A .op T ) -op ( A .op U ) ) ) |
19 |
10 13 18
|
3eqtr3d |
|- ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( A .op ( T -op U ) ) = ( ( A .op T ) -op ( A .op U ) ) ) |