Step |
Hyp |
Ref |
Expression |
1 |
|
hosd1.2 |
|- T : ~H --> ~H |
2 |
|
hosd1.3 |
|- U : ~H --> ~H |
3 |
1 2
|
honegsubi |
|- ( T +op ( -u 1 .op U ) ) = ( T -op U ) |
4 |
3
|
eqeq1i |
|- ( ( T +op ( -u 1 .op U ) ) = 0hop <-> ( T -op U ) = 0hop ) |
5 |
|
oveq1 |
|- ( ( T +op ( -u 1 .op U ) ) = 0hop -> ( ( T +op ( -u 1 .op U ) ) +op U ) = ( 0hop +op U ) ) |
6 |
4 5
|
sylbir |
|- ( ( T -op U ) = 0hop -> ( ( T +op ( -u 1 .op U ) ) +op U ) = ( 0hop +op U ) ) |
7 |
|
neg1cn |
|- -u 1 e. CC |
8 |
|
homulcl |
|- ( ( -u 1 e. CC /\ U : ~H --> ~H ) -> ( -u 1 .op U ) : ~H --> ~H ) |
9 |
7 2 8
|
mp2an |
|- ( -u 1 .op U ) : ~H --> ~H |
10 |
1 9 2
|
hoadd32i |
|- ( ( T +op ( -u 1 .op U ) ) +op U ) = ( ( T +op U ) +op ( -u 1 .op U ) ) |
11 |
1 2 9
|
hoaddassi |
|- ( ( T +op U ) +op ( -u 1 .op U ) ) = ( T +op ( U +op ( -u 1 .op U ) ) ) |
12 |
2 2
|
honegsubi |
|- ( U +op ( -u 1 .op U ) ) = ( U -op U ) |
13 |
2
|
hodidi |
|- ( U -op U ) = 0hop |
14 |
12 13
|
eqtri |
|- ( U +op ( -u 1 .op U ) ) = 0hop |
15 |
14
|
oveq2i |
|- ( T +op ( U +op ( -u 1 .op U ) ) ) = ( T +op 0hop ) |
16 |
1
|
hoaddid1i |
|- ( T +op 0hop ) = T |
17 |
15 16
|
eqtri |
|- ( T +op ( U +op ( -u 1 .op U ) ) ) = T |
18 |
11 17
|
eqtri |
|- ( ( T +op U ) +op ( -u 1 .op U ) ) = T |
19 |
10 18
|
eqtri |
|- ( ( T +op ( -u 1 .op U ) ) +op U ) = T |
20 |
|
ho0f |
|- 0hop : ~H --> ~H |
21 |
20 2
|
hoaddcomi |
|- ( 0hop +op U ) = ( U +op 0hop ) |
22 |
2
|
hoaddid1i |
|- ( U +op 0hop ) = U |
23 |
21 22
|
eqtri |
|- ( 0hop +op U ) = U |
24 |
6 19 23
|
3eqtr3g |
|- ( ( T -op U ) = 0hop -> T = U ) |
25 |
|
oveq1 |
|- ( T = U -> ( T -op U ) = ( U -op U ) ) |
26 |
25 13
|
eqtrdi |
|- ( T = U -> ( T -op U ) = 0hop ) |
27 |
24 26
|
impbii |
|- ( ( T -op U ) = 0hop <-> T = U ) |