| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hosd1.2 |  |-  T : ~H --> ~H | 
						
							| 2 |  | hosd1.3 |  |-  U : ~H --> ~H | 
						
							| 3 | 1 2 | honegsubi |  |-  ( T +op ( -u 1 .op U ) ) = ( T -op U ) | 
						
							| 4 | 3 | eqeq1i |  |-  ( ( T +op ( -u 1 .op U ) ) = 0hop <-> ( T -op U ) = 0hop ) | 
						
							| 5 |  | oveq1 |  |-  ( ( T +op ( -u 1 .op U ) ) = 0hop -> ( ( T +op ( -u 1 .op U ) ) +op U ) = ( 0hop +op U ) ) | 
						
							| 6 | 4 5 | sylbir |  |-  ( ( T -op U ) = 0hop -> ( ( T +op ( -u 1 .op U ) ) +op U ) = ( 0hop +op U ) ) | 
						
							| 7 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 8 |  | homulcl |  |-  ( ( -u 1 e. CC /\ U : ~H --> ~H ) -> ( -u 1 .op U ) : ~H --> ~H ) | 
						
							| 9 | 7 2 8 | mp2an |  |-  ( -u 1 .op U ) : ~H --> ~H | 
						
							| 10 | 1 9 2 | hoadd32i |  |-  ( ( T +op ( -u 1 .op U ) ) +op U ) = ( ( T +op U ) +op ( -u 1 .op U ) ) | 
						
							| 11 | 1 2 9 | hoaddassi |  |-  ( ( T +op U ) +op ( -u 1 .op U ) ) = ( T +op ( U +op ( -u 1 .op U ) ) ) | 
						
							| 12 | 2 2 | honegsubi |  |-  ( U +op ( -u 1 .op U ) ) = ( U -op U ) | 
						
							| 13 | 2 | hodidi |  |-  ( U -op U ) = 0hop | 
						
							| 14 | 12 13 | eqtri |  |-  ( U +op ( -u 1 .op U ) ) = 0hop | 
						
							| 15 | 14 | oveq2i |  |-  ( T +op ( U +op ( -u 1 .op U ) ) ) = ( T +op 0hop ) | 
						
							| 16 | 1 | hoaddridi |  |-  ( T +op 0hop ) = T | 
						
							| 17 | 15 16 | eqtri |  |-  ( T +op ( U +op ( -u 1 .op U ) ) ) = T | 
						
							| 18 | 11 17 | eqtri |  |-  ( ( T +op U ) +op ( -u 1 .op U ) ) = T | 
						
							| 19 | 10 18 | eqtri |  |-  ( ( T +op ( -u 1 .op U ) ) +op U ) = T | 
						
							| 20 |  | ho0f |  |-  0hop : ~H --> ~H | 
						
							| 21 | 20 2 | hoaddcomi |  |-  ( 0hop +op U ) = ( U +op 0hop ) | 
						
							| 22 | 2 | hoaddridi |  |-  ( U +op 0hop ) = U | 
						
							| 23 | 21 22 | eqtri |  |-  ( 0hop +op U ) = U | 
						
							| 24 | 6 19 23 | 3eqtr3g |  |-  ( ( T -op U ) = 0hop -> T = U ) | 
						
							| 25 |  | oveq1 |  |-  ( T = U -> ( T -op U ) = ( U -op U ) ) | 
						
							| 26 | 25 13 | eqtrdi |  |-  ( T = U -> ( T -op U ) = 0hop ) | 
						
							| 27 | 24 26 | impbii |  |-  ( ( T -op U ) = 0hop <-> T = U ) |