Metamath Proof Explorer


Theorem hosubfni

Description: Functionality of difference of Hilbert space operators. (Contributed by NM, 2-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypotheses hoeq.1
|- S : ~H --> ~H
hoeq.2
|- T : ~H --> ~H
Assertion hosubfni
|- ( S -op T ) Fn ~H

Proof

Step Hyp Ref Expression
1 hoeq.1
 |-  S : ~H --> ~H
2 hoeq.2
 |-  T : ~H --> ~H
3 1 2 hosubcli
 |-  ( S -op T ) : ~H --> ~H
4 ffn
 |-  ( ( S -op T ) : ~H --> ~H -> ( S -op T ) Fn ~H )
5 3 4 ax-mp
 |-  ( S -op T ) Fn ~H