Metamath Proof Explorer


Theorem hosubid1

Description: The zero operator subtracted from a Hilbert space operator. (Contributed by NM, 25-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion hosubid1
|- ( T : ~H --> ~H -> ( T -op 0hop ) = T )

Proof

Step Hyp Ref Expression
1 ho0f
 |-  0hop : ~H --> ~H
2 ho0sub
 |-  ( ( T : ~H --> ~H /\ 0hop : ~H --> ~H ) -> ( T -op 0hop ) = ( T +op ( 0hop -op 0hop ) ) )
3 1 2 mpan2
 |-  ( T : ~H --> ~H -> ( T -op 0hop ) = ( T +op ( 0hop -op 0hop ) ) )
4 1 hodidi
 |-  ( 0hop -op 0hop ) = 0hop
5 4 oveq2i
 |-  ( T +op ( 0hop -op 0hop ) ) = ( T +op 0hop )
6 hoaddid1
 |-  ( T : ~H --> ~H -> ( T +op 0hop ) = T )
7 5 6 syl5eq
 |-  ( T : ~H --> ~H -> ( T +op ( 0hop -op 0hop ) ) = T )
8 3 7 eqtrd
 |-  ( T : ~H --> ~H -> ( T -op 0hop ) = T )