Step |
Hyp |
Ref |
Expression |
1 |
|
hosubsub2 |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( S -op ( T -op U ) ) = ( S +op ( U -op T ) ) ) |
2 |
|
hoaddsubass |
|- ( ( S : ~H --> ~H /\ U : ~H --> ~H /\ T : ~H --> ~H ) -> ( ( S +op U ) -op T ) = ( S +op ( U -op T ) ) ) |
3 |
|
hoaddsub |
|- ( ( S : ~H --> ~H /\ U : ~H --> ~H /\ T : ~H --> ~H ) -> ( ( S +op U ) -op T ) = ( ( S -op T ) +op U ) ) |
4 |
2 3
|
eqtr3d |
|- ( ( S : ~H --> ~H /\ U : ~H --> ~H /\ T : ~H --> ~H ) -> ( S +op ( U -op T ) ) = ( ( S -op T ) +op U ) ) |
5 |
4
|
3com23 |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( S +op ( U -op T ) ) = ( ( S -op T ) +op U ) ) |
6 |
1 5
|
eqtrd |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( S -op ( T -op U ) ) = ( ( S -op T ) +op U ) ) |