Step |
Hyp |
Ref |
Expression |
1 |
|
hosubcl |
|- ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( T -op U ) : ~H --> ~H ) |
2 |
|
honegsub |
|- ( ( S : ~H --> ~H /\ ( T -op U ) : ~H --> ~H ) -> ( S +op ( -u 1 .op ( T -op U ) ) ) = ( S -op ( T -op U ) ) ) |
3 |
1 2
|
sylan2 |
|- ( ( S : ~H --> ~H /\ ( T : ~H --> ~H /\ U : ~H --> ~H ) ) -> ( S +op ( -u 1 .op ( T -op U ) ) ) = ( S -op ( T -op U ) ) ) |
4 |
3
|
3impb |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( S +op ( -u 1 .op ( T -op U ) ) ) = ( S -op ( T -op U ) ) ) |
5 |
|
honegsubdi2 |
|- ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( -u 1 .op ( T -op U ) ) = ( U -op T ) ) |
6 |
5
|
oveq2d |
|- ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( S +op ( -u 1 .op ( T -op U ) ) ) = ( S +op ( U -op T ) ) ) |
7 |
6
|
3adant1 |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( S +op ( -u 1 .op ( T -op U ) ) ) = ( S +op ( U -op T ) ) ) |
8 |
4 7
|
eqtr3d |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( S -op ( T -op U ) ) = ( S +op ( U -op T ) ) ) |