Step |
Hyp |
Ref |
Expression |
1 |
|
neg1cn |
|- -u 1 e. CC |
2 |
|
homulcl |
|- ( ( -u 1 e. CC /\ U : ~H --> ~H ) -> ( -u 1 .op U ) : ~H --> ~H ) |
3 |
1 2
|
mpan |
|- ( U : ~H --> ~H -> ( -u 1 .op U ) : ~H --> ~H ) |
4 |
|
hosubsub |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ ( -u 1 .op U ) : ~H --> ~H ) -> ( S -op ( T -op ( -u 1 .op U ) ) ) = ( ( S -op T ) +op ( -u 1 .op U ) ) ) |
5 |
3 4
|
syl3an3 |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( S -op ( T -op ( -u 1 .op U ) ) ) = ( ( S -op T ) +op ( -u 1 .op U ) ) ) |
6 |
|
hosubneg |
|- ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( T -op ( -u 1 .op U ) ) = ( T +op U ) ) |
7 |
6
|
3adant1 |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( T -op ( -u 1 .op U ) ) = ( T +op U ) ) |
8 |
7
|
oveq2d |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( S -op ( T -op ( -u 1 .op U ) ) ) = ( S -op ( T +op U ) ) ) |
9 |
|
hosubcl |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( S -op T ) : ~H --> ~H ) |
10 |
|
honegsub |
|- ( ( ( S -op T ) : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( S -op T ) +op ( -u 1 .op U ) ) = ( ( S -op T ) -op U ) ) |
11 |
9 10
|
stoic3 |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( S -op T ) +op ( -u 1 .op U ) ) = ( ( S -op T ) -op U ) ) |
12 |
5 8 11
|
3eqtr3rd |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( S -op T ) -op U ) = ( S -op ( T +op U ) ) ) |