Step |
Hyp |
Ref |
Expression |
1 |
|
hosmval |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( S +op T ) = ( x e. ~H |-> ( ( S ` x ) +h ( T ` x ) ) ) ) |
2 |
1
|
fveq1d |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( ( S +op T ) ` A ) = ( ( x e. ~H |-> ( ( S ` x ) +h ( T ` x ) ) ) ` A ) ) |
3 |
|
fveq2 |
|- ( x = A -> ( S ` x ) = ( S ` A ) ) |
4 |
|
fveq2 |
|- ( x = A -> ( T ` x ) = ( T ` A ) ) |
5 |
3 4
|
oveq12d |
|- ( x = A -> ( ( S ` x ) +h ( T ` x ) ) = ( ( S ` A ) +h ( T ` A ) ) ) |
6 |
|
eqid |
|- ( x e. ~H |-> ( ( S ` x ) +h ( T ` x ) ) ) = ( x e. ~H |-> ( ( S ` x ) +h ( T ` x ) ) ) |
7 |
|
ovex |
|- ( ( S ` A ) +h ( T ` A ) ) e. _V |
8 |
5 6 7
|
fvmpt |
|- ( A e. ~H -> ( ( x e. ~H |-> ( ( S ` x ) +h ( T ` x ) ) ) ` A ) = ( ( S ` A ) +h ( T ` A ) ) ) |
9 |
2 8
|
sylan9eq |
|- ( ( ( S : ~H --> ~H /\ T : ~H --> ~H ) /\ A e. ~H ) -> ( ( S +op T ) ` A ) = ( ( S ` A ) +h ( T ` A ) ) ) |
10 |
9
|
3impa |
|- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ A e. ~H ) -> ( ( S +op T ) ` A ) = ( ( S ` A ) +h ( T ` A ) ) ) |