Step |
Hyp |
Ref |
Expression |
1 |
|
hpgid.p |
|- P = ( Base ` G ) |
2 |
|
hpgid.i |
|- I = ( Itv ` G ) |
3 |
|
hpgid.l |
|- L = ( LineG ` G ) |
4 |
|
hpgid.g |
|- ( ph -> G e. TarskiG ) |
5 |
|
hpgid.d |
|- ( ph -> D e. ran L ) |
6 |
|
hpgid.a |
|- ( ph -> A e. P ) |
7 |
|
hpgid.o |
|- O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } |
8 |
|
hpgid.1 |
|- ( ph -> -. A e. D ) |
9 |
3 4 5
|
tglnne0 |
|- ( ph -> D =/= (/) ) |
10 |
|
n0 |
|- ( D =/= (/) <-> E. x x e. D ) |
11 |
9 10
|
sylib |
|- ( ph -> E. x x e. D ) |
12 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
13 |
4
|
adantr |
|- ( ( ph /\ x e. D ) -> G e. TarskiG ) |
14 |
6
|
adantr |
|- ( ( ph /\ x e. D ) -> A e. P ) |
15 |
5
|
adantr |
|- ( ( ph /\ x e. D ) -> D e. ran L ) |
16 |
|
simpr |
|- ( ( ph /\ x e. D ) -> x e. D ) |
17 |
1 3 2 13 15 16
|
tglnpt |
|- ( ( ph /\ x e. D ) -> x e. P ) |
18 |
5
|
adantr |
|- ( ( ph /\ ( # ` P ) = 1 ) -> D e. ran L ) |
19 |
4
|
adantr |
|- ( ( ph /\ ( # ` P ) = 1 ) -> G e. TarskiG ) |
20 |
|
simpr |
|- ( ( ph /\ ( # ` P ) = 1 ) -> ( # ` P ) = 1 ) |
21 |
1 2 3 19 20
|
tglndim0 |
|- ( ( ph /\ ( # ` P ) = 1 ) -> -. D e. ran L ) |
22 |
18 21
|
pm2.65da |
|- ( ph -> -. ( # ` P ) = 1 ) |
23 |
1 6
|
tgldimor |
|- ( ph -> ( ( # ` P ) = 1 \/ 2 <_ ( # ` P ) ) ) |
24 |
23
|
ord |
|- ( ph -> ( -. ( # ` P ) = 1 -> 2 <_ ( # ` P ) ) ) |
25 |
22 24
|
mpd |
|- ( ph -> 2 <_ ( # ` P ) ) |
26 |
25
|
adantr |
|- ( ( ph /\ x e. D ) -> 2 <_ ( # ` P ) ) |
27 |
1 12 2 13 14 17 26
|
tgbtwndiff |
|- ( ( ph /\ x e. D ) -> E. c e. P ( x e. ( A I c ) /\ x =/= c ) ) |
28 |
8
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ x e. ( A I c ) ) /\ x =/= c ) -> -. A e. D ) |
29 |
13
|
ad4antr |
|- ( ( ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ x e. ( A I c ) ) /\ x =/= c ) /\ c e. D ) -> G e. TarskiG ) |
30 |
17
|
ad4antr |
|- ( ( ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ x e. ( A I c ) ) /\ x =/= c ) /\ c e. D ) -> x e. P ) |
31 |
|
simpr |
|- ( ( ( ph /\ x e. D ) /\ c e. P ) -> c e. P ) |
32 |
31
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ x e. ( A I c ) ) /\ x =/= c ) /\ c e. D ) -> c e. P ) |
33 |
14
|
ad4antr |
|- ( ( ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ x e. ( A I c ) ) /\ x =/= c ) /\ c e. D ) -> A e. P ) |
34 |
|
simplr |
|- ( ( ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ x e. ( A I c ) ) /\ x =/= c ) /\ c e. D ) -> x =/= c ) |
35 |
|
simplr |
|- ( ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ x e. ( A I c ) ) /\ x =/= c ) -> x e. ( A I c ) ) |
36 |
35
|
adantr |
|- ( ( ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ x e. ( A I c ) ) /\ x =/= c ) /\ c e. D ) -> x e. ( A I c ) ) |
37 |
1 2 3 29 30 32 33 34 36
|
btwnlng2 |
|- ( ( ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ x e. ( A I c ) ) /\ x =/= c ) /\ c e. D ) -> A e. ( x L c ) ) |
38 |
15
|
ad4antr |
|- ( ( ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ x e. ( A I c ) ) /\ x =/= c ) /\ c e. D ) -> D e. ran L ) |
39 |
16
|
ad4antr |
|- ( ( ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ x e. ( A I c ) ) /\ x =/= c ) /\ c e. D ) -> x e. D ) |
40 |
|
simpr |
|- ( ( ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ x e. ( A I c ) ) /\ x =/= c ) /\ c e. D ) -> c e. D ) |
41 |
1 2 3 29 30 32 34 34 38 39 40
|
tglinethru |
|- ( ( ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ x e. ( A I c ) ) /\ x =/= c ) /\ c e. D ) -> D = ( x L c ) ) |
42 |
37 41
|
eleqtrrd |
|- ( ( ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ x e. ( A I c ) ) /\ x =/= c ) /\ c e. D ) -> A e. D ) |
43 |
28 42
|
mtand |
|- ( ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ x e. ( A I c ) ) /\ x =/= c ) -> -. c e. D ) |
44 |
|
eleq1w |
|- ( t = x -> ( t e. ( A I c ) <-> x e. ( A I c ) ) ) |
45 |
44
|
rspcev |
|- ( ( x e. D /\ x e. ( A I c ) ) -> E. t e. D t e. ( A I c ) ) |
46 |
45
|
ad5ant24 |
|- ( ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ x e. ( A I c ) ) /\ x =/= c ) -> E. t e. D t e. ( A I c ) ) |
47 |
28 43 46
|
jca31 |
|- ( ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ x e. ( A I c ) ) /\ x =/= c ) -> ( ( -. A e. D /\ -. c e. D ) /\ E. t e. D t e. ( A I c ) ) ) |
48 |
47
|
anasss |
|- ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ ( x e. ( A I c ) /\ x =/= c ) ) -> ( ( -. A e. D /\ -. c e. D ) /\ E. t e. D t e. ( A I c ) ) ) |
49 |
14
|
adantr |
|- ( ( ( ph /\ x e. D ) /\ c e. P ) -> A e. P ) |
50 |
1 12 2 7 49 31
|
islnopp |
|- ( ( ( ph /\ x e. D ) /\ c e. P ) -> ( A O c <-> ( ( -. A e. D /\ -. c e. D ) /\ E. t e. D t e. ( A I c ) ) ) ) |
51 |
50
|
adantr |
|- ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ ( x e. ( A I c ) /\ x =/= c ) ) -> ( A O c <-> ( ( -. A e. D /\ -. c e. D ) /\ E. t e. D t e. ( A I c ) ) ) ) |
52 |
48 51
|
mpbird |
|- ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ ( x e. ( A I c ) /\ x =/= c ) ) -> A O c ) |
53 |
52
|
ex |
|- ( ( ( ph /\ x e. D ) /\ c e. P ) -> ( ( x e. ( A I c ) /\ x =/= c ) -> A O c ) ) |
54 |
53
|
reximdva |
|- ( ( ph /\ x e. D ) -> ( E. c e. P ( x e. ( A I c ) /\ x =/= c ) -> E. c e. P A O c ) ) |
55 |
27 54
|
mpd |
|- ( ( ph /\ x e. D ) -> E. c e. P A O c ) |
56 |
11 55
|
exlimddv |
|- ( ph -> E. c e. P A O c ) |