Step |
Hyp |
Ref |
Expression |
1 |
|
ishpg.p |
|- P = ( Base ` G ) |
2 |
|
ishpg.i |
|- I = ( Itv ` G ) |
3 |
|
ishpg.l |
|- L = ( LineG ` G ) |
4 |
|
ishpg.o |
|- O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } |
5 |
|
ishpg.g |
|- ( ph -> G e. TarskiG ) |
6 |
|
ishpg.d |
|- ( ph -> D e. ran L ) |
7 |
|
hpgbr.a |
|- ( ph -> A e. P ) |
8 |
|
hpgbr.b |
|- ( ph -> B e. P ) |
9 |
|
hpgne1.1 |
|- ( ph -> A ( ( hpG ` G ) ` D ) B ) |
10 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
11 |
6
|
ad2antrr |
|- ( ( ( ph /\ c e. P ) /\ ( A O c /\ B O c ) ) -> D e. ran L ) |
12 |
5
|
ad2antrr |
|- ( ( ( ph /\ c e. P ) /\ ( A O c /\ B O c ) ) -> G e. TarskiG ) |
13 |
8
|
ad2antrr |
|- ( ( ( ph /\ c e. P ) /\ ( A O c /\ B O c ) ) -> B e. P ) |
14 |
|
simplr |
|- ( ( ( ph /\ c e. P ) /\ ( A O c /\ B O c ) ) -> c e. P ) |
15 |
|
simprr |
|- ( ( ( ph /\ c e. P ) /\ ( A O c /\ B O c ) ) -> B O c ) |
16 |
1 10 2 4 3 11 12 13 14 15
|
oppne1 |
|- ( ( ( ph /\ c e. P ) /\ ( A O c /\ B O c ) ) -> -. B e. D ) |
17 |
1 2 3 4 5 6 7 8
|
hpgbr |
|- ( ph -> ( A ( ( hpG ` G ) ` D ) B <-> E. c e. P ( A O c /\ B O c ) ) ) |
18 |
9 17
|
mpbid |
|- ( ph -> E. c e. P ( A O c /\ B O c ) ) |
19 |
16 18
|
r19.29a |
|- ( ph -> -. B e. D ) |