| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hpgid.p |
|- P = ( Base ` G ) |
| 2 |
|
hpgid.i |
|- I = ( Itv ` G ) |
| 3 |
|
hpgid.l |
|- L = ( LineG ` G ) |
| 4 |
|
hpgid.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
hpgid.d |
|- ( ph -> D e. ran L ) |
| 6 |
|
hpgid.a |
|- ( ph -> A e. P ) |
| 7 |
|
hpgid.o |
|- O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } |
| 8 |
|
hpgcom.b |
|- ( ph -> B e. P ) |
| 9 |
|
hpgcom.1 |
|- ( ph -> A ( ( hpG ` G ) ` D ) B ) |
| 10 |
|
hpgtr.c |
|- ( ph -> C e. P ) |
| 11 |
|
hpgtr.1 |
|- ( ph -> B ( ( hpG ` G ) ` D ) C ) |
| 12 |
1 2 3 7 4 5 6 8
|
hpgbr |
|- ( ph -> ( A ( ( hpG ` G ) ` D ) B <-> E. c e. P ( A O c /\ B O c ) ) ) |
| 13 |
9 12
|
mpbid |
|- ( ph -> E. c e. P ( A O c /\ B O c ) ) |
| 14 |
|
simprl |
|- ( ( ( ph /\ c e. P ) /\ ( A O c /\ B O c ) ) -> A O c ) |
| 15 |
11
|
ad2antrr |
|- ( ( ( ph /\ c e. P ) /\ ( A O c /\ B O c ) ) -> B ( ( hpG ` G ) ` D ) C ) |
| 16 |
4
|
ad2antrr |
|- ( ( ( ph /\ c e. P ) /\ ( A O c /\ B O c ) ) -> G e. TarskiG ) |
| 17 |
5
|
ad2antrr |
|- ( ( ( ph /\ c e. P ) /\ ( A O c /\ B O c ) ) -> D e. ran L ) |
| 18 |
8
|
ad2antrr |
|- ( ( ( ph /\ c e. P ) /\ ( A O c /\ B O c ) ) -> B e. P ) |
| 19 |
10
|
ad2antrr |
|- ( ( ( ph /\ c e. P ) /\ ( A O c /\ B O c ) ) -> C e. P ) |
| 20 |
|
simplr |
|- ( ( ( ph /\ c e. P ) /\ ( A O c /\ B O c ) ) -> c e. P ) |
| 21 |
|
simprr |
|- ( ( ( ph /\ c e. P ) /\ ( A O c /\ B O c ) ) -> B O c ) |
| 22 |
1 2 3 7 16 17 18 19 20 21
|
lnopp2hpgb |
|- ( ( ( ph /\ c e. P ) /\ ( A O c /\ B O c ) ) -> ( C O c <-> B ( ( hpG ` G ) ` D ) C ) ) |
| 23 |
15 22
|
mpbird |
|- ( ( ( ph /\ c e. P ) /\ ( A O c /\ B O c ) ) -> C O c ) |
| 24 |
14 23
|
jca |
|- ( ( ( ph /\ c e. P ) /\ ( A O c /\ B O c ) ) -> ( A O c /\ C O c ) ) |
| 25 |
24
|
ex |
|- ( ( ph /\ c e. P ) -> ( ( A O c /\ B O c ) -> ( A O c /\ C O c ) ) ) |
| 26 |
25
|
reximdva |
|- ( ph -> ( E. c e. P ( A O c /\ B O c ) -> E. c e. P ( A O c /\ C O c ) ) ) |
| 27 |
13 26
|
mpd |
|- ( ph -> E. c e. P ( A O c /\ C O c ) ) |
| 28 |
1 2 3 7 4 5 6 10
|
hpgbr |
|- ( ph -> ( A ( ( hpG ` G ) ` D ) C <-> E. c e. P ( A O c /\ C O c ) ) ) |
| 29 |
27 28
|
mpbird |
|- ( ph -> A ( ( hpG ` G ) ` D ) C ) |