Metamath Proof Explorer


Theorem hsmex3

Description: The set of hereditary size-limited sets, assuming ax-reg , using strict comparison (an easy corollary by separation). (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Assertion hsmex3
|- ( X e. V -> { s | A. x e. ( TC ` { s } ) x ~< X } e. _V )

Proof

Step Hyp Ref Expression
1 sdomdom
 |-  ( x ~< X -> x ~<_ X )
2 1 ralimi
 |-  ( A. x e. ( TC ` { s } ) x ~< X -> A. x e. ( TC ` { s } ) x ~<_ X )
3 2 ss2abi
 |-  { s | A. x e. ( TC ` { s } ) x ~< X } C_ { s | A. x e. ( TC ` { s } ) x ~<_ X }
4 hsmex2
 |-  ( X e. V -> { s | A. x e. ( TC ` { s } ) x ~<_ X } e. _V )
5 ssexg
 |-  ( ( { s | A. x e. ( TC ` { s } ) x ~< X } C_ { s | A. x e. ( TC ` { s } ) x ~<_ X } /\ { s | A. x e. ( TC ` { s } ) x ~<_ X } e. _V ) -> { s | A. x e. ( TC ` { s } ) x ~< X } e. _V )
6 3 4 5 sylancr
 |-  ( X e. V -> { s | A. x e. ( TC ` { s } ) x ~< X } e. _V )