Step |
Hyp |
Ref |
Expression |
1 |
|
hsmexlem.o |
|- O = OrdIso ( _E , A ) |
2 |
1
|
oicl |
|- Ord dom O |
3 |
|
relwdom |
|- Rel ~<_* |
4 |
3
|
brrelex1i |
|- ( A ~<_* B -> A e. _V ) |
5 |
4
|
adantl |
|- ( ( A C_ On /\ A ~<_* B ) -> A e. _V ) |
6 |
|
uniexg |
|- ( A e. _V -> U. A e. _V ) |
7 |
|
sucexg |
|- ( U. A e. _V -> suc U. A e. _V ) |
8 |
5 6 7
|
3syl |
|- ( ( A C_ On /\ A ~<_* B ) -> suc U. A e. _V ) |
9 |
1
|
oif |
|- O : dom O --> A |
10 |
|
onsucuni |
|- ( A C_ On -> A C_ suc U. A ) |
11 |
10
|
adantr |
|- ( ( A C_ On /\ A ~<_* B ) -> A C_ suc U. A ) |
12 |
|
fss |
|- ( ( O : dom O --> A /\ A C_ suc U. A ) -> O : dom O --> suc U. A ) |
13 |
9 11 12
|
sylancr |
|- ( ( A C_ On /\ A ~<_* B ) -> O : dom O --> suc U. A ) |
14 |
1
|
oismo |
|- ( A C_ On -> ( Smo O /\ ran O = A ) ) |
15 |
14
|
adantr |
|- ( ( A C_ On /\ A ~<_* B ) -> ( Smo O /\ ran O = A ) ) |
16 |
15
|
simpld |
|- ( ( A C_ On /\ A ~<_* B ) -> Smo O ) |
17 |
|
ssorduni |
|- ( A C_ On -> Ord U. A ) |
18 |
17
|
adantr |
|- ( ( A C_ On /\ A ~<_* B ) -> Ord U. A ) |
19 |
|
ordsuc |
|- ( Ord U. A <-> Ord suc U. A ) |
20 |
18 19
|
sylib |
|- ( ( A C_ On /\ A ~<_* B ) -> Ord suc U. A ) |
21 |
|
smorndom |
|- ( ( O : dom O --> suc U. A /\ Smo O /\ Ord suc U. A ) -> dom O C_ suc U. A ) |
22 |
13 16 20 21
|
syl3anc |
|- ( ( A C_ On /\ A ~<_* B ) -> dom O C_ suc U. A ) |
23 |
8 22
|
ssexd |
|- ( ( A C_ On /\ A ~<_* B ) -> dom O e. _V ) |
24 |
|
elong |
|- ( dom O e. _V -> ( dom O e. On <-> Ord dom O ) ) |
25 |
23 24
|
syl |
|- ( ( A C_ On /\ A ~<_* B ) -> ( dom O e. On <-> Ord dom O ) ) |
26 |
2 25
|
mpbiri |
|- ( ( A C_ On /\ A ~<_* B ) -> dom O e. On ) |
27 |
|
canth2g |
|- ( dom O e. _V -> dom O ~< ~P dom O ) |
28 |
|
sdomdom |
|- ( dom O ~< ~P dom O -> dom O ~<_ ~P dom O ) |
29 |
23 27 28
|
3syl |
|- ( ( A C_ On /\ A ~<_* B ) -> dom O ~<_ ~P dom O ) |
30 |
|
simpl |
|- ( ( A C_ On /\ A ~<_* B ) -> A C_ On ) |
31 |
|
epweon |
|- _E We On |
32 |
|
wess |
|- ( A C_ On -> ( _E We On -> _E We A ) ) |
33 |
30 31 32
|
mpisyl |
|- ( ( A C_ On /\ A ~<_* B ) -> _E We A ) |
34 |
|
epse |
|- _E Se A |
35 |
1
|
oiiso2 |
|- ( ( _E We A /\ _E Se A ) -> O Isom _E , _E ( dom O , ran O ) ) |
36 |
33 34 35
|
sylancl |
|- ( ( A C_ On /\ A ~<_* B ) -> O Isom _E , _E ( dom O , ran O ) ) |
37 |
|
isof1o |
|- ( O Isom _E , _E ( dom O , ran O ) -> O : dom O -1-1-onto-> ran O ) |
38 |
36 37
|
syl |
|- ( ( A C_ On /\ A ~<_* B ) -> O : dom O -1-1-onto-> ran O ) |
39 |
15
|
simprd |
|- ( ( A C_ On /\ A ~<_* B ) -> ran O = A ) |
40 |
39
|
f1oeq3d |
|- ( ( A C_ On /\ A ~<_* B ) -> ( O : dom O -1-1-onto-> ran O <-> O : dom O -1-1-onto-> A ) ) |
41 |
38 40
|
mpbid |
|- ( ( A C_ On /\ A ~<_* B ) -> O : dom O -1-1-onto-> A ) |
42 |
|
f1oen2g |
|- ( ( dom O e. On /\ A e. _V /\ O : dom O -1-1-onto-> A ) -> dom O ~~ A ) |
43 |
26 5 41 42
|
syl3anc |
|- ( ( A C_ On /\ A ~<_* B ) -> dom O ~~ A ) |
44 |
|
endom |
|- ( dom O ~~ A -> dom O ~<_ A ) |
45 |
|
domwdom |
|- ( dom O ~<_ A -> dom O ~<_* A ) |
46 |
43 44 45
|
3syl |
|- ( ( A C_ On /\ A ~<_* B ) -> dom O ~<_* A ) |
47 |
|
wdomtr |
|- ( ( dom O ~<_* A /\ A ~<_* B ) -> dom O ~<_* B ) |
48 |
46 47
|
sylancom |
|- ( ( A C_ On /\ A ~<_* B ) -> dom O ~<_* B ) |
49 |
|
wdompwdom |
|- ( dom O ~<_* B -> ~P dom O ~<_ ~P B ) |
50 |
48 49
|
syl |
|- ( ( A C_ On /\ A ~<_* B ) -> ~P dom O ~<_ ~P B ) |
51 |
|
domtr |
|- ( ( dom O ~<_ ~P dom O /\ ~P dom O ~<_ ~P B ) -> dom O ~<_ ~P B ) |
52 |
29 50 51
|
syl2anc |
|- ( ( A C_ On /\ A ~<_* B ) -> dom O ~<_ ~P B ) |
53 |
|
elharval |
|- ( dom O e. ( har ` ~P B ) <-> ( dom O e. On /\ dom O ~<_ ~P B ) ) |
54 |
26 52 53
|
sylanbrc |
|- ( ( A C_ On /\ A ~<_* B ) -> dom O e. ( har ` ~P B ) ) |