Step |
Hyp |
Ref |
Expression |
1 |
|
hsmexlem4.x |
|- X e. _V |
2 |
|
hsmexlem4.h |
|- H = ( rec ( ( z e. _V |-> ( har ` ~P ( X X. z ) ) ) , ( har ` ~P X ) ) |` _om ) |
3 |
|
hsmexlem4.u |
|- U = ( x e. _V |-> ( rec ( ( y e. _V |-> U. y ) , x ) |` _om ) ) |
4 |
|
hsmexlem4.s |
|- S = { a e. U. ( R1 " On ) | A. b e. ( TC ` { a } ) b ~<_ X } |
5 |
|
hsmexlem4.o |
|- O = OrdIso ( _E , ( rank " ( ( U ` d ) ` c ) ) ) |
6 |
|
fveq2 |
|- ( c = (/) -> ( ( U ` d ) ` c ) = ( ( U ` d ) ` (/) ) ) |
7 |
6
|
imaeq2d |
|- ( c = (/) -> ( rank " ( ( U ` d ) ` c ) ) = ( rank " ( ( U ` d ) ` (/) ) ) ) |
8 |
|
oieq2 |
|- ( ( rank " ( ( U ` d ) ` c ) ) = ( rank " ( ( U ` d ) ` (/) ) ) -> OrdIso ( _E , ( rank " ( ( U ` d ) ` c ) ) ) = OrdIso ( _E , ( rank " ( ( U ` d ) ` (/) ) ) ) ) |
9 |
7 8
|
syl |
|- ( c = (/) -> OrdIso ( _E , ( rank " ( ( U ` d ) ` c ) ) ) = OrdIso ( _E , ( rank " ( ( U ` d ) ` (/) ) ) ) ) |
10 |
5 9
|
eqtrid |
|- ( c = (/) -> O = OrdIso ( _E , ( rank " ( ( U ` d ) ` (/) ) ) ) ) |
11 |
10
|
dmeqd |
|- ( c = (/) -> dom O = dom OrdIso ( _E , ( rank " ( ( U ` d ) ` (/) ) ) ) ) |
12 |
|
fveq2 |
|- ( c = (/) -> ( H ` c ) = ( H ` (/) ) ) |
13 |
11 12
|
eleq12d |
|- ( c = (/) -> ( dom O e. ( H ` c ) <-> dom OrdIso ( _E , ( rank " ( ( U ` d ) ` (/) ) ) ) e. ( H ` (/) ) ) ) |
14 |
13
|
ralbidv |
|- ( c = (/) -> ( A. d e. S dom O e. ( H ` c ) <-> A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` (/) ) ) ) e. ( H ` (/) ) ) ) |
15 |
|
fveq2 |
|- ( c = e -> ( ( U ` d ) ` c ) = ( ( U ` d ) ` e ) ) |
16 |
15
|
imaeq2d |
|- ( c = e -> ( rank " ( ( U ` d ) ` c ) ) = ( rank " ( ( U ` d ) ` e ) ) ) |
17 |
|
oieq2 |
|- ( ( rank " ( ( U ` d ) ` c ) ) = ( rank " ( ( U ` d ) ` e ) ) -> OrdIso ( _E , ( rank " ( ( U ` d ) ` c ) ) ) = OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) ) |
18 |
16 17
|
syl |
|- ( c = e -> OrdIso ( _E , ( rank " ( ( U ` d ) ` c ) ) ) = OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) ) |
19 |
5 18
|
eqtrid |
|- ( c = e -> O = OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) ) |
20 |
19
|
dmeqd |
|- ( c = e -> dom O = dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) ) |
21 |
|
fveq2 |
|- ( c = e -> ( H ` c ) = ( H ` e ) ) |
22 |
20 21
|
eleq12d |
|- ( c = e -> ( dom O e. ( H ` c ) <-> dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) ) ) |
23 |
22
|
ralbidv |
|- ( c = e -> ( A. d e. S dom O e. ( H ` c ) <-> A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) ) ) |
24 |
|
fveq2 |
|- ( c = suc e -> ( ( U ` d ) ` c ) = ( ( U ` d ) ` suc e ) ) |
25 |
24
|
imaeq2d |
|- ( c = suc e -> ( rank " ( ( U ` d ) ` c ) ) = ( rank " ( ( U ` d ) ` suc e ) ) ) |
26 |
|
oieq2 |
|- ( ( rank " ( ( U ` d ) ` c ) ) = ( rank " ( ( U ` d ) ` suc e ) ) -> OrdIso ( _E , ( rank " ( ( U ` d ) ` c ) ) ) = OrdIso ( _E , ( rank " ( ( U ` d ) ` suc e ) ) ) ) |
27 |
25 26
|
syl |
|- ( c = suc e -> OrdIso ( _E , ( rank " ( ( U ` d ) ` c ) ) ) = OrdIso ( _E , ( rank " ( ( U ` d ) ` suc e ) ) ) ) |
28 |
5 27
|
eqtrid |
|- ( c = suc e -> O = OrdIso ( _E , ( rank " ( ( U ` d ) ` suc e ) ) ) ) |
29 |
28
|
dmeqd |
|- ( c = suc e -> dom O = dom OrdIso ( _E , ( rank " ( ( U ` d ) ` suc e ) ) ) ) |
30 |
|
fveq2 |
|- ( c = suc e -> ( H ` c ) = ( H ` suc e ) ) |
31 |
29 30
|
eleq12d |
|- ( c = suc e -> ( dom O e. ( H ` c ) <-> dom OrdIso ( _E , ( rank " ( ( U ` d ) ` suc e ) ) ) e. ( H ` suc e ) ) ) |
32 |
31
|
ralbidv |
|- ( c = suc e -> ( A. d e. S dom O e. ( H ` c ) <-> A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` suc e ) ) ) e. ( H ` suc e ) ) ) |
33 |
|
imassrn |
|- ( rank " ( ( U ` d ) ` (/) ) ) C_ ran rank |
34 |
|
rankf |
|- rank : U. ( R1 " On ) --> On |
35 |
|
frn |
|- ( rank : U. ( R1 " On ) --> On -> ran rank C_ On ) |
36 |
34 35
|
ax-mp |
|- ran rank C_ On |
37 |
33 36
|
sstri |
|- ( rank " ( ( U ` d ) ` (/) ) ) C_ On |
38 |
3
|
ituni0 |
|- ( d e. _V -> ( ( U ` d ) ` (/) ) = d ) |
39 |
38
|
elv |
|- ( ( U ` d ) ` (/) ) = d |
40 |
39
|
imaeq2i |
|- ( rank " ( ( U ` d ) ` (/) ) ) = ( rank " d ) |
41 |
|
ffun |
|- ( rank : U. ( R1 " On ) --> On -> Fun rank ) |
42 |
34 41
|
ax-mp |
|- Fun rank |
43 |
|
vex |
|- d e. _V |
44 |
|
wdomimag |
|- ( ( Fun rank /\ d e. _V ) -> ( rank " d ) ~<_* d ) |
45 |
42 43 44
|
mp2an |
|- ( rank " d ) ~<_* d |
46 |
|
sneq |
|- ( a = d -> { a } = { d } ) |
47 |
46
|
fveq2d |
|- ( a = d -> ( TC ` { a } ) = ( TC ` { d } ) ) |
48 |
47
|
raleqdv |
|- ( a = d -> ( A. b e. ( TC ` { a } ) b ~<_ X <-> A. b e. ( TC ` { d } ) b ~<_ X ) ) |
49 |
48 4
|
elrab2 |
|- ( d e. S <-> ( d e. U. ( R1 " On ) /\ A. b e. ( TC ` { d } ) b ~<_ X ) ) |
50 |
49
|
simprbi |
|- ( d e. S -> A. b e. ( TC ` { d } ) b ~<_ X ) |
51 |
|
snex |
|- { d } e. _V |
52 |
|
tcid |
|- ( { d } e. _V -> { d } C_ ( TC ` { d } ) ) |
53 |
51 52
|
ax-mp |
|- { d } C_ ( TC ` { d } ) |
54 |
|
vsnid |
|- d e. { d } |
55 |
53 54
|
sselii |
|- d e. ( TC ` { d } ) |
56 |
|
breq1 |
|- ( b = d -> ( b ~<_ X <-> d ~<_ X ) ) |
57 |
56
|
rspcv |
|- ( d e. ( TC ` { d } ) -> ( A. b e. ( TC ` { d } ) b ~<_ X -> d ~<_ X ) ) |
58 |
55 57
|
ax-mp |
|- ( A. b e. ( TC ` { d } ) b ~<_ X -> d ~<_ X ) |
59 |
|
domwdom |
|- ( d ~<_ X -> d ~<_* X ) |
60 |
50 58 59
|
3syl |
|- ( d e. S -> d ~<_* X ) |
61 |
|
wdomtr |
|- ( ( ( rank " d ) ~<_* d /\ d ~<_* X ) -> ( rank " d ) ~<_* X ) |
62 |
45 60 61
|
sylancr |
|- ( d e. S -> ( rank " d ) ~<_* X ) |
63 |
40 62
|
eqbrtrid |
|- ( d e. S -> ( rank " ( ( U ` d ) ` (/) ) ) ~<_* X ) |
64 |
|
eqid |
|- OrdIso ( _E , ( rank " ( ( U ` d ) ` (/) ) ) ) = OrdIso ( _E , ( rank " ( ( U ` d ) ` (/) ) ) ) |
65 |
64
|
hsmexlem1 |
|- ( ( ( rank " ( ( U ` d ) ` (/) ) ) C_ On /\ ( rank " ( ( U ` d ) ` (/) ) ) ~<_* X ) -> dom OrdIso ( _E , ( rank " ( ( U ` d ) ` (/) ) ) ) e. ( har ` ~P X ) ) |
66 |
37 63 65
|
sylancr |
|- ( d e. S -> dom OrdIso ( _E , ( rank " ( ( U ` d ) ` (/) ) ) ) e. ( har ` ~P X ) ) |
67 |
2
|
hsmexlem7 |
|- ( H ` (/) ) = ( har ` ~P X ) |
68 |
66 67
|
eleqtrrdi |
|- ( d e. S -> dom OrdIso ( _E , ( rank " ( ( U ` d ) ` (/) ) ) ) e. ( H ` (/) ) ) |
69 |
68
|
rgen |
|- A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` (/) ) ) ) e. ( H ` (/) ) |
70 |
|
nfra1 |
|- F/ d A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) |
71 |
|
nfv |
|- F/ d e e. _om |
72 |
70 71
|
nfan |
|- F/ d ( A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) /\ e e. _om ) |
73 |
3
|
ituniiun |
|- ( d e. _V -> ( ( U ` d ) ` suc e ) = U_ f e. d ( ( U ` f ) ` e ) ) |
74 |
73
|
elv |
|- ( ( U ` d ) ` suc e ) = U_ f e. d ( ( U ` f ) ` e ) |
75 |
74
|
imaeq2i |
|- ( rank " ( ( U ` d ) ` suc e ) ) = ( rank " U_ f e. d ( ( U ` f ) ` e ) ) |
76 |
|
imaiun |
|- ( rank " U_ f e. d ( ( U ` f ) ` e ) ) = U_ f e. d ( rank " ( ( U ` f ) ` e ) ) |
77 |
75 76
|
eqtri |
|- ( rank " ( ( U ` d ) ` suc e ) ) = U_ f e. d ( rank " ( ( U ` f ) ` e ) ) |
78 |
|
oieq2 |
|- ( ( rank " ( ( U ` d ) ` suc e ) ) = U_ f e. d ( rank " ( ( U ` f ) ` e ) ) -> OrdIso ( _E , ( rank " ( ( U ` d ) ` suc e ) ) ) = OrdIso ( _E , U_ f e. d ( rank " ( ( U ` f ) ` e ) ) ) ) |
79 |
77 78
|
ax-mp |
|- OrdIso ( _E , ( rank " ( ( U ` d ) ` suc e ) ) ) = OrdIso ( _E , U_ f e. d ( rank " ( ( U ` f ) ` e ) ) ) |
80 |
79
|
dmeqi |
|- dom OrdIso ( _E , ( rank " ( ( U ` d ) ` suc e ) ) ) = dom OrdIso ( _E , U_ f e. d ( rank " ( ( U ` f ) ` e ) ) ) |
81 |
60
|
ad2antll |
|- ( ( A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) /\ ( e e. _om /\ d e. S ) ) -> d ~<_* X ) |
82 |
2
|
hsmexlem9 |
|- ( e e. _om -> ( H ` e ) e. On ) |
83 |
82
|
ad2antrl |
|- ( ( A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) /\ ( e e. _om /\ d e. S ) ) -> ( H ` e ) e. On ) |
84 |
|
fveq2 |
|- ( d = f -> ( U ` d ) = ( U ` f ) ) |
85 |
84
|
fveq1d |
|- ( d = f -> ( ( U ` d ) ` e ) = ( ( U ` f ) ` e ) ) |
86 |
85
|
imaeq2d |
|- ( d = f -> ( rank " ( ( U ` d ) ` e ) ) = ( rank " ( ( U ` f ) ` e ) ) ) |
87 |
|
oieq2 |
|- ( ( rank " ( ( U ` d ) ` e ) ) = ( rank " ( ( U ` f ) ` e ) ) -> OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) = OrdIso ( _E , ( rank " ( ( U ` f ) ` e ) ) ) ) |
88 |
86 87
|
syl |
|- ( d = f -> OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) = OrdIso ( _E , ( rank " ( ( U ` f ) ` e ) ) ) ) |
89 |
88
|
dmeqd |
|- ( d = f -> dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) = dom OrdIso ( _E , ( rank " ( ( U ` f ) ` e ) ) ) ) |
90 |
89
|
eleq1d |
|- ( d = f -> ( dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) <-> dom OrdIso ( _E , ( rank " ( ( U ` f ) ` e ) ) ) e. ( H ` e ) ) ) |
91 |
|
simpll |
|- ( ( ( A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) /\ ( e e. _om /\ d e. S ) ) /\ f e. d ) -> A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) ) |
92 |
4
|
ssrab3 |
|- S C_ U. ( R1 " On ) |
93 |
92
|
sseli |
|- ( d e. S -> d e. U. ( R1 " On ) ) |
94 |
|
r1elssi |
|- ( d e. U. ( R1 " On ) -> d C_ U. ( R1 " On ) ) |
95 |
93 94
|
syl |
|- ( d e. S -> d C_ U. ( R1 " On ) ) |
96 |
95
|
sselda |
|- ( ( d e. S /\ f e. d ) -> f e. U. ( R1 " On ) ) |
97 |
|
snssi |
|- ( f e. d -> { f } C_ d ) |
98 |
43
|
tcss |
|- ( { f } C_ d -> ( TC ` { f } ) C_ ( TC ` d ) ) |
99 |
97 98
|
syl |
|- ( f e. d -> ( TC ` { f } ) C_ ( TC ` d ) ) |
100 |
51
|
tcel |
|- ( d e. { d } -> ( TC ` d ) C_ ( TC ` { d } ) ) |
101 |
54 100
|
mp1i |
|- ( f e. d -> ( TC ` d ) C_ ( TC ` { d } ) ) |
102 |
99 101
|
sstrd |
|- ( f e. d -> ( TC ` { f } ) C_ ( TC ` { d } ) ) |
103 |
|
ssralv |
|- ( ( TC ` { f } ) C_ ( TC ` { d } ) -> ( A. b e. ( TC ` { d } ) b ~<_ X -> A. b e. ( TC ` { f } ) b ~<_ X ) ) |
104 |
102 103
|
syl |
|- ( f e. d -> ( A. b e. ( TC ` { d } ) b ~<_ X -> A. b e. ( TC ` { f } ) b ~<_ X ) ) |
105 |
50 104
|
mpan9 |
|- ( ( d e. S /\ f e. d ) -> A. b e. ( TC ` { f } ) b ~<_ X ) |
106 |
|
sneq |
|- ( a = f -> { a } = { f } ) |
107 |
106
|
fveq2d |
|- ( a = f -> ( TC ` { a } ) = ( TC ` { f } ) ) |
108 |
107
|
raleqdv |
|- ( a = f -> ( A. b e. ( TC ` { a } ) b ~<_ X <-> A. b e. ( TC ` { f } ) b ~<_ X ) ) |
109 |
108 4
|
elrab2 |
|- ( f e. S <-> ( f e. U. ( R1 " On ) /\ A. b e. ( TC ` { f } ) b ~<_ X ) ) |
110 |
96 105 109
|
sylanbrc |
|- ( ( d e. S /\ f e. d ) -> f e. S ) |
111 |
110
|
adantll |
|- ( ( ( e e. _om /\ d e. S ) /\ f e. d ) -> f e. S ) |
112 |
111
|
adantll |
|- ( ( ( A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) /\ ( e e. _om /\ d e. S ) ) /\ f e. d ) -> f e. S ) |
113 |
90 91 112
|
rspcdva |
|- ( ( ( A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) /\ ( e e. _om /\ d e. S ) ) /\ f e. d ) -> dom OrdIso ( _E , ( rank " ( ( U ` f ) ` e ) ) ) e. ( H ` e ) ) |
114 |
|
imassrn |
|- ( rank " ( ( U ` f ) ` e ) ) C_ ran rank |
115 |
114 36
|
sstri |
|- ( rank " ( ( U ` f ) ` e ) ) C_ On |
116 |
|
fvex |
|- ( ( U ` f ) ` e ) e. _V |
117 |
116
|
funimaex |
|- ( Fun rank -> ( rank " ( ( U ` f ) ` e ) ) e. _V ) |
118 |
42 117
|
ax-mp |
|- ( rank " ( ( U ` f ) ` e ) ) e. _V |
119 |
118
|
elpw |
|- ( ( rank " ( ( U ` f ) ` e ) ) e. ~P On <-> ( rank " ( ( U ` f ) ` e ) ) C_ On ) |
120 |
115 119
|
mpbir |
|- ( rank " ( ( U ` f ) ` e ) ) e. ~P On |
121 |
113 120
|
jctil |
|- ( ( ( A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) /\ ( e e. _om /\ d e. S ) ) /\ f e. d ) -> ( ( rank " ( ( U ` f ) ` e ) ) e. ~P On /\ dom OrdIso ( _E , ( rank " ( ( U ` f ) ` e ) ) ) e. ( H ` e ) ) ) |
122 |
121
|
ralrimiva |
|- ( ( A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) /\ ( e e. _om /\ d e. S ) ) -> A. f e. d ( ( rank " ( ( U ` f ) ` e ) ) e. ~P On /\ dom OrdIso ( _E , ( rank " ( ( U ` f ) ` e ) ) ) e. ( H ` e ) ) ) |
123 |
|
eqid |
|- OrdIso ( _E , ( rank " ( ( U ` f ) ` e ) ) ) = OrdIso ( _E , ( rank " ( ( U ` f ) ` e ) ) ) |
124 |
|
eqid |
|- OrdIso ( _E , U_ f e. d ( rank " ( ( U ` f ) ` e ) ) ) = OrdIso ( _E , U_ f e. d ( rank " ( ( U ` f ) ` e ) ) ) |
125 |
123 124
|
hsmexlem3 |
|- ( ( ( d ~<_* X /\ ( H ` e ) e. On ) /\ A. f e. d ( ( rank " ( ( U ` f ) ` e ) ) e. ~P On /\ dom OrdIso ( _E , ( rank " ( ( U ` f ) ` e ) ) ) e. ( H ` e ) ) ) -> dom OrdIso ( _E , U_ f e. d ( rank " ( ( U ` f ) ` e ) ) ) e. ( har ` ~P ( X X. ( H ` e ) ) ) ) |
126 |
81 83 122 125
|
syl21anc |
|- ( ( A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) /\ ( e e. _om /\ d e. S ) ) -> dom OrdIso ( _E , U_ f e. d ( rank " ( ( U ` f ) ` e ) ) ) e. ( har ` ~P ( X X. ( H ` e ) ) ) ) |
127 |
80 126
|
eqeltrid |
|- ( ( A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) /\ ( e e. _om /\ d e. S ) ) -> dom OrdIso ( _E , ( rank " ( ( U ` d ) ` suc e ) ) ) e. ( har ` ~P ( X X. ( H ` e ) ) ) ) |
128 |
2
|
hsmexlem8 |
|- ( e e. _om -> ( H ` suc e ) = ( har ` ~P ( X X. ( H ` e ) ) ) ) |
129 |
128
|
ad2antrl |
|- ( ( A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) /\ ( e e. _om /\ d e. S ) ) -> ( H ` suc e ) = ( har ` ~P ( X X. ( H ` e ) ) ) ) |
130 |
127 129
|
eleqtrrd |
|- ( ( A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) /\ ( e e. _om /\ d e. S ) ) -> dom OrdIso ( _E , ( rank " ( ( U ` d ) ` suc e ) ) ) e. ( H ` suc e ) ) |
131 |
130
|
expr |
|- ( ( A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) /\ e e. _om ) -> ( d e. S -> dom OrdIso ( _E , ( rank " ( ( U ` d ) ` suc e ) ) ) e. ( H ` suc e ) ) ) |
132 |
72 131
|
ralrimi |
|- ( ( A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) /\ e e. _om ) -> A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` suc e ) ) ) e. ( H ` suc e ) ) |
133 |
132
|
expcom |
|- ( e e. _om -> ( A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) -> A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` suc e ) ) ) e. ( H ` suc e ) ) ) |
134 |
14 23 32 69 133
|
finds1 |
|- ( c e. _om -> A. d e. S dom O e. ( H ` c ) ) |
135 |
134
|
r19.21bi |
|- ( ( c e. _om /\ d e. S ) -> dom O e. ( H ` c ) ) |