Metamath Proof Explorer


Theorem hsmexlem5

Description: Lemma for hsmex . Combining the above constraints, along with itunitc and tcrank , gives an effective constraint on the rank of S . (Contributed by Stefan O'Rear, 14-Feb-2015)

Ref Expression
Hypotheses hsmexlem4.x
|- X e. _V
hsmexlem4.h
|- H = ( rec ( ( z e. _V |-> ( har ` ~P ( X X. z ) ) ) , ( har ` ~P X ) ) |` _om )
hsmexlem4.u
|- U = ( x e. _V |-> ( rec ( ( y e. _V |-> U. y ) , x ) |` _om ) )
hsmexlem4.s
|- S = { a e. U. ( R1 " On ) | A. b e. ( TC ` { a } ) b ~<_ X }
hsmexlem4.o
|- O = OrdIso ( _E , ( rank " ( ( U ` d ) ` c ) ) )
Assertion hsmexlem5
|- ( d e. S -> ( rank ` d ) e. ( har ` ~P ( _om X. U. ran H ) ) )

Proof

Step Hyp Ref Expression
1 hsmexlem4.x
 |-  X e. _V
2 hsmexlem4.h
 |-  H = ( rec ( ( z e. _V |-> ( har ` ~P ( X X. z ) ) ) , ( har ` ~P X ) ) |` _om )
3 hsmexlem4.u
 |-  U = ( x e. _V |-> ( rec ( ( y e. _V |-> U. y ) , x ) |` _om ) )
4 hsmexlem4.s
 |-  S = { a e. U. ( R1 " On ) | A. b e. ( TC ` { a } ) b ~<_ X }
5 hsmexlem4.o
 |-  O = OrdIso ( _E , ( rank " ( ( U ` d ) ` c ) ) )
6 4 ssrab3
 |-  S C_ U. ( R1 " On )
7 6 sseli
 |-  ( d e. S -> d e. U. ( R1 " On ) )
8 tcrank
 |-  ( d e. U. ( R1 " On ) -> ( rank ` d ) = ( rank " ( TC ` d ) ) )
9 7 8 syl
 |-  ( d e. S -> ( rank ` d ) = ( rank " ( TC ` d ) ) )
10 3 itunitc
 |-  ( TC ` d ) = U. ran ( U ` d )
11 3 itunifn
 |-  ( d e. S -> ( U ` d ) Fn _om )
12 fniunfv
 |-  ( ( U ` d ) Fn _om -> U_ c e. _om ( ( U ` d ) ` c ) = U. ran ( U ` d ) )
13 11 12 syl
 |-  ( d e. S -> U_ c e. _om ( ( U ` d ) ` c ) = U. ran ( U ` d ) )
14 10 13 eqtr4id
 |-  ( d e. S -> ( TC ` d ) = U_ c e. _om ( ( U ` d ) ` c ) )
15 14 imaeq2d
 |-  ( d e. S -> ( rank " ( TC ` d ) ) = ( rank " U_ c e. _om ( ( U ` d ) ` c ) ) )
16 imaiun
 |-  ( rank " U_ c e. _om ( ( U ` d ) ` c ) ) = U_ c e. _om ( rank " ( ( U ` d ) ` c ) )
17 16 a1i
 |-  ( d e. S -> ( rank " U_ c e. _om ( ( U ` d ) ` c ) ) = U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) )
18 9 15 17 3eqtrd
 |-  ( d e. S -> ( rank ` d ) = U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) )
19 dmresi
 |-  dom ( _I |` U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) ) = U_ c e. _om ( rank " ( ( U ` d ) ` c ) )
20 18 19 eqtr4di
 |-  ( d e. S -> ( rank ` d ) = dom ( _I |` U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) ) )
21 rankon
 |-  ( rank ` d ) e. On
22 18 21 eqeltrrdi
 |-  ( d e. S -> U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) e. On )
23 eloni
 |-  ( U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) e. On -> Ord U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) )
24 oiid
 |-  ( Ord U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) -> OrdIso ( _E , U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) ) = ( _I |` U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) ) )
25 22 23 24 3syl
 |-  ( d e. S -> OrdIso ( _E , U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) ) = ( _I |` U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) ) )
26 25 dmeqd
 |-  ( d e. S -> dom OrdIso ( _E , U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) ) = dom ( _I |` U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) ) )
27 20 26 eqtr4d
 |-  ( d e. S -> ( rank ` d ) = dom OrdIso ( _E , U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) ) )
28 omex
 |-  _om e. _V
29 wdomref
 |-  ( _om e. _V -> _om ~<_* _om )
30 28 29 mp1i
 |-  ( d e. S -> _om ~<_* _om )
31 frfnom
 |-  ( rec ( ( z e. _V |-> ( har ` ~P ( X X. z ) ) ) , ( har ` ~P X ) ) |` _om ) Fn _om
32 2 fneq1i
 |-  ( H Fn _om <-> ( rec ( ( z e. _V |-> ( har ` ~P ( X X. z ) ) ) , ( har ` ~P X ) ) |` _om ) Fn _om )
33 31 32 mpbir
 |-  H Fn _om
34 fniunfv
 |-  ( H Fn _om -> U_ a e. _om ( H ` a ) = U. ran H )
35 33 34 ax-mp
 |-  U_ a e. _om ( H ` a ) = U. ran H
36 iunon
 |-  ( ( _om e. _V /\ A. a e. _om ( H ` a ) e. On ) -> U_ a e. _om ( H ` a ) e. On )
37 28 36 mpan
 |-  ( A. a e. _om ( H ` a ) e. On -> U_ a e. _om ( H ` a ) e. On )
38 2 hsmexlem9
 |-  ( a e. _om -> ( H ` a ) e. On )
39 37 38 mprg
 |-  U_ a e. _om ( H ` a ) e. On
40 35 39 eqeltrri
 |-  U. ran H e. On
41 40 a1i
 |-  ( d e. S -> U. ran H e. On )
42 fvssunirn
 |-  ( H ` c ) C_ U. ran H
43 eqid
 |-  OrdIso ( _E , ( rank " ( ( U ` d ) ` c ) ) ) = OrdIso ( _E , ( rank " ( ( U ` d ) ` c ) ) )
44 1 2 3 4 43 hsmexlem4
 |-  ( ( c e. _om /\ d e. S ) -> dom OrdIso ( _E , ( rank " ( ( U ` d ) ` c ) ) ) e. ( H ` c ) )
45 44 ancoms
 |-  ( ( d e. S /\ c e. _om ) -> dom OrdIso ( _E , ( rank " ( ( U ` d ) ` c ) ) ) e. ( H ` c ) )
46 42 45 sselid
 |-  ( ( d e. S /\ c e. _om ) -> dom OrdIso ( _E , ( rank " ( ( U ` d ) ` c ) ) ) e. U. ran H )
47 imassrn
 |-  ( rank " ( ( U ` d ) ` c ) ) C_ ran rank
48 rankf
 |-  rank : U. ( R1 " On ) --> On
49 frn
 |-  ( rank : U. ( R1 " On ) --> On -> ran rank C_ On )
50 48 49 ax-mp
 |-  ran rank C_ On
51 47 50 sstri
 |-  ( rank " ( ( U ` d ) ` c ) ) C_ On
52 ffun
 |-  ( rank : U. ( R1 " On ) --> On -> Fun rank )
53 fvex
 |-  ( ( U ` d ) ` c ) e. _V
54 53 funimaex
 |-  ( Fun rank -> ( rank " ( ( U ` d ) ` c ) ) e. _V )
55 48 52 54 mp2b
 |-  ( rank " ( ( U ` d ) ` c ) ) e. _V
56 55 elpw
 |-  ( ( rank " ( ( U ` d ) ` c ) ) e. ~P On <-> ( rank " ( ( U ` d ) ` c ) ) C_ On )
57 51 56 mpbir
 |-  ( rank " ( ( U ` d ) ` c ) ) e. ~P On
58 46 57 jctil
 |-  ( ( d e. S /\ c e. _om ) -> ( ( rank " ( ( U ` d ) ` c ) ) e. ~P On /\ dom OrdIso ( _E , ( rank " ( ( U ` d ) ` c ) ) ) e. U. ran H ) )
59 58 ralrimiva
 |-  ( d e. S -> A. c e. _om ( ( rank " ( ( U ` d ) ` c ) ) e. ~P On /\ dom OrdIso ( _E , ( rank " ( ( U ` d ) ` c ) ) ) e. U. ran H ) )
60 eqid
 |-  OrdIso ( _E , U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) ) = OrdIso ( _E , U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) )
61 43 60 hsmexlem3
 |-  ( ( ( _om ~<_* _om /\ U. ran H e. On ) /\ A. c e. _om ( ( rank " ( ( U ` d ) ` c ) ) e. ~P On /\ dom OrdIso ( _E , ( rank " ( ( U ` d ) ` c ) ) ) e. U. ran H ) ) -> dom OrdIso ( _E , U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) ) e. ( har ` ~P ( _om X. U. ran H ) ) )
62 30 41 59 61 syl21anc
 |-  ( d e. S -> dom OrdIso ( _E , U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) ) e. ( har ` ~P ( _om X. U. ran H ) ) )
63 27 62 eqeltrd
 |-  ( d e. S -> ( rank ` d ) e. ( har ` ~P ( _om X. U. ran H ) ) )