Step |
Hyp |
Ref |
Expression |
1 |
|
hsmexlem7.h |
|- H = ( rec ( ( z e. _V |-> ( har ` ~P ( X X. z ) ) ) , ( har ` ~P X ) ) |` _om ) |
2 |
|
fvex |
|- ( har ` ~P ( X X. ( H ` a ) ) ) e. _V |
3 |
|
xpeq2 |
|- ( b = z -> ( X X. b ) = ( X X. z ) ) |
4 |
3
|
pweqd |
|- ( b = z -> ~P ( X X. b ) = ~P ( X X. z ) ) |
5 |
4
|
fveq2d |
|- ( b = z -> ( har ` ~P ( X X. b ) ) = ( har ` ~P ( X X. z ) ) ) |
6 |
|
xpeq2 |
|- ( b = ( H ` a ) -> ( X X. b ) = ( X X. ( H ` a ) ) ) |
7 |
6
|
pweqd |
|- ( b = ( H ` a ) -> ~P ( X X. b ) = ~P ( X X. ( H ` a ) ) ) |
8 |
7
|
fveq2d |
|- ( b = ( H ` a ) -> ( har ` ~P ( X X. b ) ) = ( har ` ~P ( X X. ( H ` a ) ) ) ) |
9 |
1 5 8
|
frsucmpt2 |
|- ( ( a e. _om /\ ( har ` ~P ( X X. ( H ` a ) ) ) e. _V ) -> ( H ` suc a ) = ( har ` ~P ( X X. ( H ` a ) ) ) ) |
10 |
2 9
|
mpan2 |
|- ( a e. _om -> ( H ` suc a ) = ( har ` ~P ( X X. ( H ` a ) ) ) ) |