Step |
Hyp |
Ref |
Expression |
1 |
|
hsmexlem7.h |
|- H = ( rec ( ( z e. _V |-> ( har ` ~P ( X X. z ) ) ) , ( har ` ~P X ) ) |` _om ) |
2 |
|
nn0suc |
|- ( a e. _om -> ( a = (/) \/ E. b e. _om a = suc b ) ) |
3 |
|
fveq2 |
|- ( a = (/) -> ( H ` a ) = ( H ` (/) ) ) |
4 |
1
|
hsmexlem7 |
|- ( H ` (/) ) = ( har ` ~P X ) |
5 |
|
harcl |
|- ( har ` ~P X ) e. On |
6 |
4 5
|
eqeltri |
|- ( H ` (/) ) e. On |
7 |
3 6
|
eqeltrdi |
|- ( a = (/) -> ( H ` a ) e. On ) |
8 |
1
|
hsmexlem8 |
|- ( b e. _om -> ( H ` suc b ) = ( har ` ~P ( X X. ( H ` b ) ) ) ) |
9 |
|
harcl |
|- ( har ` ~P ( X X. ( H ` b ) ) ) e. On |
10 |
8 9
|
eqeltrdi |
|- ( b e. _om -> ( H ` suc b ) e. On ) |
11 |
|
fveq2 |
|- ( a = suc b -> ( H ` a ) = ( H ` suc b ) ) |
12 |
11
|
eleq1d |
|- ( a = suc b -> ( ( H ` a ) e. On <-> ( H ` suc b ) e. On ) ) |
13 |
10 12
|
syl5ibrcom |
|- ( b e. _om -> ( a = suc b -> ( H ` a ) e. On ) ) |
14 |
13
|
rexlimiv |
|- ( E. b e. _om a = suc b -> ( H ` a ) e. On ) |
15 |
7 14
|
jaoi |
|- ( ( a = (/) \/ E. b e. _om a = suc b ) -> ( H ` a ) e. On ) |
16 |
2 15
|
syl |
|- ( a e. _om -> ( H ` a ) e. On ) |