| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hstoc |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( S ` A ) +h ( S ` ( _|_ ` A ) ) ) = ( S ` ~H ) ) |
| 2 |
1
|
fveq2d |
|- ( ( S e. CHStates /\ A e. CH ) -> ( normh ` ( ( S ` A ) +h ( S ` ( _|_ ` A ) ) ) ) = ( normh ` ( S ` ~H ) ) ) |
| 3 |
2
|
oveq1d |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( normh ` ( ( S ` A ) +h ( S ` ( _|_ ` A ) ) ) ) ^ 2 ) = ( ( normh ` ( S ` ~H ) ) ^ 2 ) ) |
| 4 |
|
hstcl |
|- ( ( S e. CHStates /\ A e. CH ) -> ( S ` A ) e. ~H ) |
| 5 |
|
choccl |
|- ( A e. CH -> ( _|_ ` A ) e. CH ) |
| 6 |
|
hstcl |
|- ( ( S e. CHStates /\ ( _|_ ` A ) e. CH ) -> ( S ` ( _|_ ` A ) ) e. ~H ) |
| 7 |
5 6
|
sylan2 |
|- ( ( S e. CHStates /\ A e. CH ) -> ( S ` ( _|_ ` A ) ) e. ~H ) |
| 8 |
4 7
|
jca |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( S ` A ) e. ~H /\ ( S ` ( _|_ ` A ) ) e. ~H ) ) |
| 9 |
5
|
adantl |
|- ( ( S e. CHStates /\ A e. CH ) -> ( _|_ ` A ) e. CH ) |
| 10 |
|
chsh |
|- ( A e. CH -> A e. SH ) |
| 11 |
|
shococss |
|- ( A e. SH -> A C_ ( _|_ ` ( _|_ ` A ) ) ) |
| 12 |
10 11
|
syl |
|- ( A e. CH -> A C_ ( _|_ ` ( _|_ ` A ) ) ) |
| 13 |
12
|
adantl |
|- ( ( S e. CHStates /\ A e. CH ) -> A C_ ( _|_ ` ( _|_ ` A ) ) ) |
| 14 |
9 13
|
jca |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( _|_ ` A ) e. CH /\ A C_ ( _|_ ` ( _|_ ` A ) ) ) ) |
| 15 |
|
hstorth |
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( ( _|_ ` A ) e. CH /\ A C_ ( _|_ ` ( _|_ ` A ) ) ) ) -> ( ( S ` A ) .ih ( S ` ( _|_ ` A ) ) ) = 0 ) |
| 16 |
14 15
|
mpdan |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( S ` A ) .ih ( S ` ( _|_ ` A ) ) ) = 0 ) |
| 17 |
|
normpyth |
|- ( ( ( S ` A ) e. ~H /\ ( S ` ( _|_ ` A ) ) e. ~H ) -> ( ( ( S ` A ) .ih ( S ` ( _|_ ` A ) ) ) = 0 -> ( ( normh ` ( ( S ` A ) +h ( S ` ( _|_ ` A ) ) ) ) ^ 2 ) = ( ( ( normh ` ( S ` A ) ) ^ 2 ) + ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) ) ) |
| 18 |
8 16 17
|
sylc |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( normh ` ( ( S ` A ) +h ( S ` ( _|_ ` A ) ) ) ) ^ 2 ) = ( ( ( normh ` ( S ` A ) ) ^ 2 ) + ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) ) |
| 19 |
|
hst1a |
|- ( S e. CHStates -> ( normh ` ( S ` ~H ) ) = 1 ) |
| 20 |
19
|
oveq1d |
|- ( S e. CHStates -> ( ( normh ` ( S ` ~H ) ) ^ 2 ) = ( 1 ^ 2 ) ) |
| 21 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
| 22 |
20 21
|
eqtrdi |
|- ( S e. CHStates -> ( ( normh ` ( S ` ~H ) ) ^ 2 ) = 1 ) |
| 23 |
22
|
adantr |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( normh ` ( S ` ~H ) ) ^ 2 ) = 1 ) |
| 24 |
3 18 23
|
3eqtr3d |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( ( normh ` ( S ` A ) ) ^ 2 ) + ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) = 1 ) |