| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hstr.1 |  |-  A e. CH | 
						
							| 2 |  | hstr.2 |  |-  B e. CH | 
						
							| 3 | 1 2 | hstri |  |-  ( A. f e. CHStates ( ( normh ` ( f ` A ) ) = 1 -> ( normh ` ( f ` B ) ) = 1 ) -> A C_ B ) | 
						
							| 4 |  | hstles |  |-  ( ( ( f e. CHStates /\ A e. CH ) /\ ( B e. CH /\ A C_ B ) ) -> ( ( normh ` ( f ` A ) ) = 1 -> ( normh ` ( f ` B ) ) = 1 ) ) | 
						
							| 5 | 2 4 | mpanr1 |  |-  ( ( ( f e. CHStates /\ A e. CH ) /\ A C_ B ) -> ( ( normh ` ( f ` A ) ) = 1 -> ( normh ` ( f ` B ) ) = 1 ) ) | 
						
							| 6 | 1 5 | mpanl2 |  |-  ( ( f e. CHStates /\ A C_ B ) -> ( ( normh ` ( f ` A ) ) = 1 -> ( normh ` ( f ` B ) ) = 1 ) ) | 
						
							| 7 | 6 | expcom |  |-  ( A C_ B -> ( f e. CHStates -> ( ( normh ` ( f ` A ) ) = 1 -> ( normh ` ( f ` B ) ) = 1 ) ) ) | 
						
							| 8 | 7 | ralrimiv |  |-  ( A C_ B -> A. f e. CHStates ( ( normh ` ( f ` A ) ) = 1 -> ( normh ` ( f ` B ) ) = 1 ) ) | 
						
							| 9 | 3 8 | impbii |  |-  ( A. f e. CHStates ( ( normh ` ( f ` A ) ) = 1 -> ( normh ` ( f ` B ) ) = 1 ) <-> A C_ B ) |