| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hstrlem3.1 |  |-  S = ( x e. CH |-> ( ( projh ` x ) ` u ) ) | 
						
							| 2 |  | hstrlem3.2 |  |-  ( ph <-> ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) ) | 
						
							| 3 |  | hstrlem3.3 |  |-  A e. CH | 
						
							| 4 |  | hstrlem3.4 |  |-  B e. CH | 
						
							| 5 | 1 2 3 4 | hstrlem4 |  |-  ( ph -> ( normh ` ( S ` A ) ) = 1 ) | 
						
							| 6 | 1 2 3 4 | hstrlem3 |  |-  ( ph -> S e. CHStates ) | 
						
							| 7 |  | hstcl |  |-  ( ( S e. CHStates /\ B e. CH ) -> ( S ` B ) e. ~H ) | 
						
							| 8 | 6 4 7 | sylancl |  |-  ( ph -> ( S ` B ) e. ~H ) | 
						
							| 9 |  | normcl |  |-  ( ( S ` B ) e. ~H -> ( normh ` ( S ` B ) ) e. RR ) | 
						
							| 10 | 8 9 | syl |  |-  ( ph -> ( normh ` ( S ` B ) ) e. RR ) | 
						
							| 11 | 1 2 3 4 | hstrlem5 |  |-  ( ph -> ( normh ` ( S ` B ) ) < 1 ) | 
						
							| 12 | 10 11 | ltned |  |-  ( ph -> ( normh ` ( S ` B ) ) =/= 1 ) | 
						
							| 13 | 12 | neneqd |  |-  ( ph -> -. ( normh ` ( S ` B ) ) = 1 ) | 
						
							| 14 | 5 13 | jcnd |  |-  ( ph -> -. ( ( normh ` ( S ` A ) ) = 1 -> ( normh ` ( S ` B ) ) = 1 ) ) |