Step |
Hyp |
Ref |
Expression |
1 |
|
uniss |
|- ( A C_ B -> U. A C_ U. B ) |
2 |
|
sspwuni |
|- ( A C_ ~P ~H <-> U. A C_ ~H ) |
3 |
|
sspwuni |
|- ( B C_ ~P ~H <-> U. B C_ ~H ) |
4 |
|
occon2 |
|- ( ( U. A C_ ~H /\ U. B C_ ~H ) -> ( U. A C_ U. B -> ( _|_ ` ( _|_ ` U. A ) ) C_ ( _|_ ` ( _|_ ` U. B ) ) ) ) |
5 |
2 3 4
|
syl2anb |
|- ( ( A C_ ~P ~H /\ B C_ ~P ~H ) -> ( U. A C_ U. B -> ( _|_ ` ( _|_ ` U. A ) ) C_ ( _|_ ` ( _|_ ` U. B ) ) ) ) |
6 |
1 5
|
syl5 |
|- ( ( A C_ ~P ~H /\ B C_ ~P ~H ) -> ( A C_ B -> ( _|_ ` ( _|_ ` U. A ) ) C_ ( _|_ ` ( _|_ ` U. B ) ) ) ) |
7 |
|
hsupval |
|- ( A C_ ~P ~H -> ( \/H ` A ) = ( _|_ ` ( _|_ ` U. A ) ) ) |
8 |
7
|
adantr |
|- ( ( A C_ ~P ~H /\ B C_ ~P ~H ) -> ( \/H ` A ) = ( _|_ ` ( _|_ ` U. A ) ) ) |
9 |
|
hsupval |
|- ( B C_ ~P ~H -> ( \/H ` B ) = ( _|_ ` ( _|_ ` U. B ) ) ) |
10 |
9
|
adantl |
|- ( ( A C_ ~P ~H /\ B C_ ~P ~H ) -> ( \/H ` B ) = ( _|_ ` ( _|_ ` U. B ) ) ) |
11 |
8 10
|
sseq12d |
|- ( ( A C_ ~P ~H /\ B C_ ~P ~H ) -> ( ( \/H ` A ) C_ ( \/H ` B ) <-> ( _|_ ` ( _|_ ` U. A ) ) C_ ( _|_ ` ( _|_ ` U. B ) ) ) ) |
12 |
6 11
|
sylibrd |
|- ( ( A C_ ~P ~H /\ B C_ ~P ~H ) -> ( A C_ B -> ( \/H ` A ) C_ ( \/H ` B ) ) ) |