Metamath Proof Explorer


Theorem hsupunss

Description: The union of a set of Hilbert space subsets is smaller than its supremum. (Contributed by NM, 24-Nov-2004) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Assertion hsupunss
|- ( A C_ ~P ~H -> U. A C_ ( \/H ` A ) )

Proof

Step Hyp Ref Expression
1 sspwuni
 |-  ( A C_ ~P ~H <-> U. A C_ ~H )
2 ococss
 |-  ( U. A C_ ~H -> U. A C_ ( _|_ ` ( _|_ ` U. A ) ) )
3 1 2 sylbi
 |-  ( A C_ ~P ~H -> U. A C_ ( _|_ ` ( _|_ ` U. A ) ) )
4 hsupval
 |-  ( A C_ ~P ~H -> ( \/H ` A ) = ( _|_ ` ( _|_ ` U. A ) ) )
5 3 4 sseqtrrd
 |-  ( A C_ ~P ~H -> U. A C_ ( \/H ` A ) )