Description: The union of a set of Hilbert space subsets is smaller than its supremum. (Contributed by NM, 24-Nov-2004) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | hsupunss | |- ( A C_ ~P ~H -> U. A C_ ( \/H ` A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspwuni | |- ( A C_ ~P ~H <-> U. A C_ ~H ) |
|
2 | ococss | |- ( U. A C_ ~H -> U. A C_ ( _|_ ` ( _|_ ` U. A ) ) ) |
|
3 | 1 2 | sylbi | |- ( A C_ ~P ~H -> U. A C_ ( _|_ ` ( _|_ ` U. A ) ) ) |
4 | hsupval | |- ( A C_ ~P ~H -> ( \/H ` A ) = ( _|_ ` ( _|_ ` U. A ) ) ) |
|
5 | 3 4 | sseqtrrd | |- ( A C_ ~P ~H -> U. A C_ ( \/H ` A ) ) |