Step |
Hyp |
Ref |
Expression |
1 |
|
ax-hilex |
|- ~H e. _V |
2 |
1
|
pwex |
|- ~P ~H e. _V |
3 |
2
|
elpw2 |
|- ( A e. ~P ~P ~H <-> A C_ ~P ~H ) |
4 |
|
unieq |
|- ( x = A -> U. x = U. A ) |
5 |
4
|
fveq2d |
|- ( x = A -> ( _|_ ` U. x ) = ( _|_ ` U. A ) ) |
6 |
5
|
fveq2d |
|- ( x = A -> ( _|_ ` ( _|_ ` U. x ) ) = ( _|_ ` ( _|_ ` U. A ) ) ) |
7 |
|
df-chsup |
|- \/H = ( x e. ~P ~P ~H |-> ( _|_ ` ( _|_ ` U. x ) ) ) |
8 |
|
fvex |
|- ( _|_ ` ( _|_ ` U. A ) ) e. _V |
9 |
6 7 8
|
fvmpt |
|- ( A e. ~P ~P ~H -> ( \/H ` A ) = ( _|_ ` ( _|_ ` U. A ) ) ) |
10 |
3 9
|
sylbir |
|- ( A C_ ~P ~H -> ( \/H ` A ) = ( _|_ ` ( _|_ ` U. A ) ) ) |