Step |
Hyp |
Ref |
Expression |
1 |
|
htalem.1 |
|- A e. _V |
2 |
|
htalem.2 |
|- B = ( iota_ x e. A A. y e. A -. y R x ) |
3 |
|
simpl |
|- ( ( R We A /\ A =/= (/) ) -> R We A ) |
4 |
1
|
a1i |
|- ( ( R We A /\ A =/= (/) ) -> A e. _V ) |
5 |
|
ssidd |
|- ( ( R We A /\ A =/= (/) ) -> A C_ A ) |
6 |
|
simpr |
|- ( ( R We A /\ A =/= (/) ) -> A =/= (/) ) |
7 |
|
wereu |
|- ( ( R We A /\ ( A e. _V /\ A C_ A /\ A =/= (/) ) ) -> E! x e. A A. y e. A -. y R x ) |
8 |
3 4 5 6 7
|
syl13anc |
|- ( ( R We A /\ A =/= (/) ) -> E! x e. A A. y e. A -. y R x ) |
9 |
|
riotacl |
|- ( E! x e. A A. y e. A -. y R x -> ( iota_ x e. A A. y e. A -. y R x ) e. A ) |
10 |
8 9
|
syl |
|- ( ( R We A /\ A =/= (/) ) -> ( iota_ x e. A A. y e. A -. y R x ) e. A ) |
11 |
2 10
|
eqeltrid |
|- ( ( R We A /\ A =/= (/) ) -> B e. A ) |