Metamath Proof Explorer


Theorem htalem

Description: Lemma for defining an emulation of Hilbert's epsilon. Hilbert's epsilon is described at http://plato.stanford.edu/entries/epsilon-calculus/ . This theorem is equivalent to Hilbert's "transfinite axiom", described on that page, with the additional R We A antecedent. The element B is the epsilon that the theorem emulates. (Contributed by NM, 11-Mar-2004) (Revised by Mario Carneiro, 25-Jun-2015)

Ref Expression
Hypotheses htalem.1
|- A e. _V
htalem.2
|- B = ( iota_ x e. A A. y e. A -. y R x )
Assertion htalem
|- ( ( R We A /\ A =/= (/) ) -> B e. A )

Proof

Step Hyp Ref Expression
1 htalem.1
 |-  A e. _V
2 htalem.2
 |-  B = ( iota_ x e. A A. y e. A -. y R x )
3 simpl
 |-  ( ( R We A /\ A =/= (/) ) -> R We A )
4 1 a1i
 |-  ( ( R We A /\ A =/= (/) ) -> A e. _V )
5 ssidd
 |-  ( ( R We A /\ A =/= (/) ) -> A C_ A )
6 simpr
 |-  ( ( R We A /\ A =/= (/) ) -> A =/= (/) )
7 wereu
 |-  ( ( R We A /\ ( A e. _V /\ A C_ A /\ A =/= (/) ) ) -> E! x e. A A. y e. A -. y R x )
8 3 4 5 6 7 syl13anc
 |-  ( ( R We A /\ A =/= (/) ) -> E! x e. A A. y e. A -. y R x )
9 riotacl
 |-  ( E! x e. A A. y e. A -. y R x -> ( iota_ x e. A A. y e. A -. y R x ) e. A )
10 8 9 syl
 |-  ( ( R We A /\ A =/= (/) ) -> ( iota_ x e. A A. y e. A -. y R x ) e. A )
11 2 10 eqeltrid
 |-  ( ( R We A /\ A =/= (/) ) -> B e. A )