| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-hv0cl |  |-  0h e. ~H | 
						
							| 2 |  | hvsubval |  |-  ( ( 0h e. ~H /\ A e. ~H ) -> ( 0h -h A ) = ( 0h +h ( -u 1 .h A ) ) ) | 
						
							| 3 | 1 2 | mpan |  |-  ( A e. ~H -> ( 0h -h A ) = ( 0h +h ( -u 1 .h A ) ) ) | 
						
							| 4 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 5 |  | hvmulcl |  |-  ( ( -u 1 e. CC /\ A e. ~H ) -> ( -u 1 .h A ) e. ~H ) | 
						
							| 6 | 4 5 | mpan |  |-  ( A e. ~H -> ( -u 1 .h A ) e. ~H ) | 
						
							| 7 |  | hvaddlid |  |-  ( ( -u 1 .h A ) e. ~H -> ( 0h +h ( -u 1 .h A ) ) = ( -u 1 .h A ) ) | 
						
							| 8 | 6 7 | syl |  |-  ( A e. ~H -> ( 0h +h ( -u 1 .h A ) ) = ( -u 1 .h A ) ) | 
						
							| 9 | 3 8 | eqtrd |  |-  ( A e. ~H -> ( 0h -h A ) = ( -u 1 .h A ) ) |