Description: Hilbert vector space commutative/associative law. (Contributed by NM, 11-Sep-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hvass.1 | |- A e. ~H | |
| hvass.2 | |- B e. ~H | ||
| hvass.3 | |- C e. ~H | ||
| Assertion | hvadd12i | |- ( A +h ( B +h C ) ) = ( B +h ( A +h C ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hvass.1 | |- A e. ~H | |
| 2 | hvass.2 | |- B e. ~H | |
| 3 | hvass.3 | |- C e. ~H | |
| 4 | 1 2 | hvcomi | |- ( A +h B ) = ( B +h A ) | 
| 5 | 4 | oveq1i | |- ( ( A +h B ) +h C ) = ( ( B +h A ) +h C ) | 
| 6 | 1 2 3 | hvassi | |- ( ( A +h B ) +h C ) = ( A +h ( B +h C ) ) | 
| 7 | 2 1 3 | hvassi | |- ( ( B +h A ) +h C ) = ( B +h ( A +h C ) ) | 
| 8 | 5 6 7 | 3eqtr3i | |- ( A +h ( B +h C ) ) = ( B +h ( A +h C ) ) |