Metamath Proof Explorer


Theorem hvadd12i

Description: Hilbert vector space commutative/associative law. (Contributed by NM, 11-Sep-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvass.1
|- A e. ~H
hvass.2
|- B e. ~H
hvass.3
|- C e. ~H
Assertion hvadd12i
|- ( A +h ( B +h C ) ) = ( B +h ( A +h C ) )

Proof

Step Hyp Ref Expression
1 hvass.1
 |-  A e. ~H
2 hvass.2
 |-  B e. ~H
3 hvass.3
 |-  C e. ~H
4 1 2 hvcomi
 |-  ( A +h B ) = ( B +h A )
5 4 oveq1i
 |-  ( ( A +h B ) +h C ) = ( ( B +h A ) +h C )
6 1 2 3 hvassi
 |-  ( ( A +h B ) +h C ) = ( A +h ( B +h C ) )
7 2 1 3 hvassi
 |-  ( ( B +h A ) +h C ) = ( B +h ( A +h C ) )
8 5 6 7 3eqtr3i
 |-  ( A +h ( B +h C ) ) = ( B +h ( A +h C ) )