Description: Hilbert vector space commutative/associative law. (Contributed by NM, 18-Aug-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hvass.1 | |- A e. ~H | |
| hvass.2 | |- B e. ~H | ||
| hvass.3 | |- C e. ~H | ||
| Assertion | hvadd32i | |- ( ( A +h B ) +h C ) = ( ( A +h C ) +h B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hvass.1 | |- A e. ~H | |
| 2 | hvass.2 | |- B e. ~H | |
| 3 | hvass.3 | |- C e. ~H | |
| 4 | hvadd32 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h B ) +h C ) = ( ( A +h C ) +h B ) ) | |
| 5 | 1 2 3 4 | mp3an | |- ( ( A +h B ) +h C ) = ( ( A +h C ) +h B ) |